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1.1. Introduction – Physical Fundamentals of Optical  Fiber Transmission 
 

Light is used in optoelectronics and optical fiber telecommunication for data 

transmission, in optical fiber interferometers, optical fiber lasers, sensors and optical 

fiber modulators. The term “light” in fiber transmission, even though commonly used, 

is not always precise: Light defines only the electro-magnetic radiation from the 

visual range of 380-780 nm, while in many applications, e.g. optical fiber 

transmission, the electro-magnetic radiation from near infrared range (850 nm, 1310 

nm, 1550 nm) is used. Fig. 1.1. shows the electromagnetic radiation spectrum and 

allows to locate the radiation used in optical fiber transmission. In further parts of this 

book the terms “light” and “electro-magnetic radiation from near infrared range” will 

be used interchangeably.  
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Fig. 1.1. Electromagnetic radiation spectrum 

 

The optical fiber is a waveguide used for transmission of light. It consists of a 

dielectric fiber core, usually from glass, surrounded by a layer of glass or plastic 

cladding characterized by the  refraction index lower than that of the core. The light 

transmitted through the optical fiber is trapped inside the core due to the total internal 

reflection phenomenon. The total internal reflection occurs at the core-cladding 

interface when the light inside the core of the fiber is incident at an angle greater than 

the critical angle cr and returns to the core lossless and allows for light propagation 

along the fiber. The amount of light reflected at the interface changes depending on 

the incidence angle and the refraction indexes of the core and the cladding. Fig. 1.2. 

presents the idea of  the light propagation in the cylindrical optical fiber due to the 

total internal reflection. 

 

 
Fig. 1.2. Diagram of cylindrical optical fiber. 
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1.2. Snell’s Law and Critical Angle for Total Internal Reflection 

 

Let us recollect the idea of the critical angle cr as the requirement for the total 

internal reflection. The light incident  at the interface of two media characterized by 

the refraction indices n1 and n2 meets the Snell’s law condition,  
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where n1 denotes the refraction  index of medium 1; 1 is the incident angle of light 

from the medium 1 on the media interface; n2 denotes the refraction index of the 

medium 2; and 2 is the refraction angle (Fig. 1.3.). 

 
Fig. 1.3. Illustration of Snell’s law.  

If the light is incident on the interface from the more dense medium side 

(characterized by refraction index n2) into the less dense medium (n1) at 2, the angle 

1 is the refraction angle. Because n2> n1, the refraction angle 1 is greater than the 

incident angle 2. For certain critical incident angle cr the refraction angle is 90º. 

For the incident angles greater than the critical incident angle cr, the light is not 

transmitted into the less dense medium any longer. Instead, it is totally reflected at the 

interface (Fig. 1.4.). This phenomenon is called the total internal reflection. 

 

 

 
Fig. 1.4. Illustration of total internal reflection. 
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Fig.1.4 illustrates all possible situations, from perpendicular incidence on the interface 

(2=90
0
), through the partial reflection R1 and partial refraction R2 described by the 

Fresnel formula 2

1

2

221 n/nR/R  , the critical case ((2=gr , 1=90
0
), to the total 

internal reflection.  

When the light propagates through optical fiber, co denotes the incident angle 

at the core-cladding interface, cl is the refraction angle, n1= nco and n2= ncl, where 

nco is the core refraction index and ncl is the cladding refraction index (Fig.1.5).  

 

                                       
Fig.1.5. Illustration of the total internal reflection in optical fiber. 

 

From the Snell’s law we have nco sinco = ncl sincl. If co  cr then cl  90
0
, 

which means nco sincr = ncl sin90
0
, hence the critical angle cr for which the light is 

totally reflected at the interface is given by equation: 

cr = arc sin{ncl/nco}     (1.2) 

In the total internal reflection the incident wave penetrates the less dense  medium to 

certain depth (of the order of wavelength) which causes phase shift  between the 

incident and the reflected wave [1]  : 
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where  =/2- is the angle between the optical fiber axis and the wave vector of 

light propagating in the waveguide (Fig.1.6.).  
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Fig. 1.6. Light propagating in the waveguide 

 

The phase shift  plays an important role in light propagation in optical fiber. We will 

use this relation later, discussing mode types and the range of guided modes. 

When the requirement of the total internal reflection is met, the ray is reflected at the 

core-cladding interface and returns to the core lossless, which enables light 

propagation through the fiber. The source of light is laser or LED diode. Electric 

signal on entrance is turned into optical signal in a transmitter, modulating light 

intensity at the same time. Near infrared radiation introduced to the optical fiber 

propagates in the core with the speed   characteristic for light in given medium (that 

is about 200 000 000 m/s for glass, because the refraction index for a typical glass is 

;.n 521  
n

c
 ), in order to successively get to a detector (PIN photodiode or 

avalanche photodiode), where the optical signal is turned back into electric signal. 

The schematic idea of the optical fiber transmission  is shown in Fig. 1.7. 

 

 
Fig. 1.7. Schematic representation of fiber optics system. 

 

Advantages of optical  fiber transmission: 

 Immense binary flow rates, of the order of several Tb/s, under laboratory 

conditions reaching the order of 10 Tb/s, impossible while using copper based 

media; 

 Low attenuation, the signal can be transmitted over long distances without 

regeneration; 

 Optical fibers do not create external electromagnetic field, therefore they 

belong to  media hard to be listened in devices; 

 No inter-fiber crosstalk; 

 Resistance to external electromagnetic field perturbations; 

 No fire hazard; 

 Bit error  rate lower than 10
-10 

. 



 6 

 

Disadvantages of optical  fiber transmission: 

 Higher costs than copper based media; 

 Possible meltdown of the fiber at higher optical powers; 

 More difficult and more expensive connections than those for copper ones. 

 

1.3. Optical Fiber Types 

 

We will present now different types of optical fibers applied in 

telecommunications, computer networks and other applications. Optical waveguides 

can be divided into various types considering:  

a) structure (cylindrical, birefringent, planar, strip) 

b) number of modes (single- or multimode fiber) 

c) the refraction index profile (step-index or gradient-index fiber) 

d) material (glass, plastic, semiconductor) 

e) dispersion (natural dispersion, dispersion shifted fiber DSF, dispersion 

widened fiber DWF, reverse dispersion) 
f) signal processing ability (passive – data transmission, active – amplifier)  
g) polarization (classic, polarization maintaining/preserving, polarizing optical 

fiber) 

 

Fig.1.8. presents cylindrical waveguide (called optical fiber), birefringent 

waveguide,  planar waveguide, strip waveguide. 

         

 

 

 
Fig.1.8. Cylindrical waveguide (a), birefringent waveguide (b),  planar 

waveguide (c), strip waveguide (d). 

 

Cylindrical optical fiber consists of dielectric core, most often glass, 

cylindrically shaped, in which light propagates. The core is surrounded by cylindrical 

layer of dielectric material of lower refraction index, called cladding. Typical 
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refraction index difference is around n1 – n2 = 0.005. The outside jacket serves a 

protective role. 

Planar waveguide is a rectangular block consisting of three layers: base, light 

guide layer and coating. The base and the coating are characterized by lower 

refraction indices than the light propagating layer. 

Considering the number of propagating modes we can divide optical fibers 

into single-mode or multimode fibers. The mode is one of the allowed structures of 

the electromagnetic field propagating through the fiber. These structures can be 

calculated using Maxwell equations and adequate boundary conditions. We will do it 

in Chapters 1.5 and 1.6. 

 Multimode fibers (MMF) are characterized by a large core diameter (50 or  

62.5 microns) (1m=10
-6

m). 

Single mode fibers (SMF) are characterized by a small core diameter (from 5 

to 10 microns (Fig.1.9. ). The cladding diameter in both cases is 125 m. 

 

 

 
Fig.1.9.   Dimensions of the  multimode fiber (a) and the single mode fiber (b) 

 

One  can say intuitively that because of small core diameter, in the single 

mode optical fibers light propagates along one path that is nearly parallel to the fiber 

axis (Fig.1.10). The detailed analysis of light propagation based on the 

electrodynamic analysis will be provided in Chapter 1.4. We say that light wave 

propagates as a single mode, so-called fundamental mode, if there exists only one 

spatial electromagnetic field structure inside the optical fiber. 

 
Fig.1.10. Light path in single mode fiber. 

 

The light propagates in fiber as the single mode if the condition of  <2.405 is 

met, where  denotes normalized frequency given by the equation:  
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where a is the fiber core diameter, 0  is the wavelength of light propagating in the 

fiber, 1n  and 2n  are the refraction indexes of the core and the cladding, respectively. 



 8 

When the normalized frequency   is higher – the optical fiber does not work as  the 

single mode fiber because it  propagates more modes. Condition (1.4) will be derived 

in Chapter 1.5, where we will provide more precise description of the electromagnetic 

waves propagation in dielectric fibers.  

The single mode fibers do not exhibit intermodal  dispersion (which will be discussed 

in Chapter 3), thus the light pulse reaches the end of the fiber only slightly distorted. 

Therefore, the single mode fiber is suitable for long-distance transmission since the 

light pulse can be transmitted without amplification for distance of the order of 80 – 

140 km. The lack of intermodal dispersion does not mean that the pulse distortion 

disappear completely. Non-linear chromatic dispersion (which will be discussed in 

Chapter 3) as well as attenuation caused by dispersion and absorption of glass, which 

the core is built of, cause distortion and attenuation of the impulse along the fiber. 

However, this effect is weak enough, so that nowadays it is possible to transmit up to 

40 Gb/s for single wavelength. The light source for single mode optical fibers is a 

laser emitting light of the wavelength of 1310 or 1550 nm. If, using the same single 

mode fiber, multiple wavelengths are sent simultaneously (WDM-wavelength 

division multiplexing), the transmission speed may reach the order of terabits per 

second (Tb/s). The techniques of multiplexing WDM will be discussed in detail in 

Chapter 8. The single mode fibers allow for using many protocols simultaneously, 

which ensures a very efficient data transfer. 

 
 

Fig.1.11. Light path in multimode optical fiber 

 

Multimode optical fibers are characterized by large a core diameter (50/62.5 

microns). The large core diameter causes that the input pulse can travel along 

different optical paths, showing zig-zag characteristic, which means that the travel 

times of rays to reach detector are different. This process leads to the temporal signal 

broadening This phenomenon, called intermodal dispersion leads to the temporal 

signal broadening and consequently limits data transfer speed and distance of 

effective transmission to 200 – 500 m. 

 

The optical fibers discussed hitherto are characterized by the constant core 

refraction index, which exhibits a discontinuity at the core and cladding interface(Fig. 

1.12.a.) and are known as the step-index fibers. In order to reduce the influence of 

the intermodal dispersion the optical fibers in which the refraction index of the core 

changes continuously in the direction perpendicular to fiber axis are employed (Fig. 

1.12.b.). Those fibers show parabolic refraction index profile, in which the core index 

is described by the formula:  

2

0
2

1
rnnn r          (1.5) 

and depends on a distance r from the fiber axis and n0>>nr.  
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Fig. 1.12. Refraction index profile in the step-index fiber (a) and the gradient-index 

fiber (b) 

 

In the gradient-index fiber the refraction index changes progressively from the core 

to the cladding: the refraction index of the core is the highest in the center of the core 

and gradually decreases approaching the core-cladding interface. Such a profiled 

refraction index is obtained by applying layer structure of the core. Each layer 

contains different admixtures, and therefore the refraction index changes 

continuously. Such a profiled refraction index allows for minimizing effects of the 

intermodal dispersion. Indeed, although different rays travel along different paths, 

they reach the detector approximately at the same time. This is possible since the rays 

propagating along the core axis in the core center (basic mode) have the shortest 

distance to travel, but their  phase velocity is the lowest (as the refraction index is the 

highest in the center).  The waves traveling in the layers further from the core axis 

have to overcome longer distance, but their phase velocity is higher due to the lower 

refraction index close to core-cladding interface. This means that all waves traveling 

along different paths reach the end of the optical fiber approximately at the same time. 

Thus the temporal pulse broadening caused by the intermodal dispersion is 

minimized. The optical fibers with  the refraction index profile changing gradually, as 

it is shown in the Fig. 1.12.b., are known as the  gradient-index fibers.  

The geometrical ray path in such fibers does not follow a zig-zag line as it takes place 

in the case of the step-index fibers, it is sinusoidal, helical or axial (Fig 1.13)/ 

 

 
Fig. 1.13. The geometrical ray path in gradient-index fiber. 
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Polarization maintaining (or preserving) (PM) optical fibers.  

In some applications maintaining constant polarization of light in an optical fiber is 

necessary, e.g. in fiber interferometers, fiber lasers, sensors, external fiber modulators, 

coherent transmission and in integrated optical circuits coupling. Besides, in all 

optical fibers, to lesser or higher extent, attenuation depends on polarization and 

deteriorates signal propagation in optical fiber. What causes change of polarization 

state in optical fibers? In a perfect optical fiber there is no distinguished optical axis 

and core and cladding materials are isotropic, therefore there is no birefringence. In 

real optical fibers  stress, density changes, random changes of core shape or diameter 

cause the formation of distinguished optical axes, and result in birefringence. In 

consequence, two orthogonal components propagate in the optical fiber with different 

speeds, as ordinary and extraordinary ray. The different speeds of two orthogonal 

components generate phase difference changing during propagation along the fiber 

and random mixing of the two components causes change in polarization.   

To recall, the phenomenon of birefringence can be observed while transmitting 

the light through certain crystals (calcite, ice, quartz, mica, sugar), which are 

anisotropic and have the distinguished optical axes. Light beam, while refracted, splits 

into two rays- ordinary and extraordinary ones that have different speeds and different 

refraction indices(Fig. 1.14.) This phenomenon, called double refraction or 

birefringence, was discovered by Bartholinus and Huygens. They found out, that both 

rays are linearly polarized in mutually perpendicular planes, the ordinary ray is  

polarized in the plane perpendicular to the plane of the optical axis. Isotropic media 

(fluids, gases, glasses) have only one refraction index.  

                       
Fig. 1.14. Uniaxial birefringent crystal: o – ordinary beam, e – extraordinary beam, L 

– crystal length 

 

The extraordinary beam does not satisfy Snell’s Law. When we rotate the crystal 

about the axis perpendicular to incidence plane, we can notice that an ordinary beam 

stays motionless, while the extraordinary beam rotates about it. This means that the 

speed of light for the extraordinary beam is different for various directions depending 

on its orientation with respect the optical crystal axis. 

We can distinguish uniaxial and biaxial crystals, and amongst them, positive and 

negative crystals. The cross-sections of the  refraction index n surface for the uniaxial 

birefringent crystal is presented in Fig. 1.15. 
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Fig. 1.15. The refractive index surface cross-sections for uniaxial birefringent crystal,  

a) positive, b) negative 

 

For the ordinary ray the surface of refraction  index n
0
 is a sphere, because the light 

travels at the same speed in all directions. The extraordinary beam n
e
 has certain 

privileged propagation direction and experience the fastest propagation along the axis 

perpendicular to optical axis for negative crystal and along the optical axis for 

positive crystal.  

Phase   for a plane wave )cos(0 kxtEE   , where kx for optical path l 
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Therefore, the phase difference  equals 
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If the phase difference for ordinary and extraordinary beam is 
2


  , the light is 

circularly polarized, if the phase difference is   , the light is polarized 

linearly.  

In actual optical fibers microstresses give the origin for the formation of optical axes 

in different directions. Besides, light travels still longer path causing constant phase 

and polarization change. Therefore, polarization changes chaotically in time. 

In order to maintain polarization two opposite methods can be chosen: 

 using asymmetric, anisotropic stress in glaze to maximize controlled 

birefringence. This method is used in high birefringence (HB) optical fibers.   

 using perfectly symmetric, isotropic fibers, to minimize birefringence. This 

method is used in low birefringence (LB) optical fibers. The fiber must be 
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characterized by low stresses, ideal geometry and homogenous density 

distribution along the axis. 

 using polarization analyzers, which will pass only certain polarization. 

 

In polarization maintaining (PM) fiber, in which birefringence was intentionally 

created, polarization state does not change chaotically. The distinguished optical axis 

causes that random changes of density fluctuation and temporary changes of optical 

axis become negligible and are masked by main effect - intentionally created 

birefringence. When the light polarization coincides with optical axis (or the axis 

parallel to it) polarization state does not change over long distances. However, if the 

optical axis is at an angle to polarization direction, two orthogonal components are 

created: slow (in negative crystal it corresponds to an extraordinary beam) and fast 

beam (ordinary), which, for longer optical distances, generate periodically changing 

phase difference. Thus, for 45º angle, first we observe linear polarization, followed by 

elliptical and circular polarization (with phase difference 
2


  ), subsequently 

again linear (   ), but perpendicular to the linear polarization at entrance, 

elliptical, circular (
2

3
  ), in order to return to initial polarization after a full 

period (  2 ). For longer distances the cycle repeats. Fig. 1.16. shows the 

evolution of polarization state in polarization maintaining fiber, in case when the  

input signal is linearly polarized at 45º from a slow optical axis. 

                                                                

 
Fig.1.16. Evolution of state of polarization along a polarization maintaining fiber, 

when the input signal is linearly polarized at 45º from the slow axis. 

 

The measure of birefringence is parameter called modal birefringence Bm (which 

symbol should not be mistaken for normalized propagation constant) defined by 

equation: 
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where y  and x are propagation constants of orthogonal modes, whereas 
x

efn  and 
y

efn  

are effective refraction indexes for directions x and y, k0  is a wave vector. Typical 

values mB 10
-6

 for LB fibers and mB 10
-6

 for high birefringence fibers (HB). 

Another parameter defining birefringence of fiber is a beat length defined as 
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where BL  is the distance necessary for the increase of orthogonal modes difference by 

2


, the distance of power exchange between modes. This phenomenon repeats 

periodically. 

Fig. 1.17. presents typical cross-section of polarization maintaining fiber. We can 

notice on the cross-section, in the fiber, next to the core, there are two openings, 

which are filled with stress rods made of material characterized by higher thermal 

expansion coefficient than cladding. After fiber drawing, stresses are created along 

the distinguished axis in the waveguide, which cause controlled birefringence. 

Therefore, the fiber acts as polarization analyzer and transmits the light  in only one 

polarization plane. 

 

 
Fig. 1.17.  Cross-section of polarization maintaining fiber. 

 

Other types of fibers, among them dispersion shifted fibers, will be discussed in a 

chapter devoted to dispersion in optical fibers. In order to understand their operation 

principals we need to understand non-linear optical effects occurring in fibers. Here 

we only are going to mention, that non-linear effects are highly disadvantageous in 

long-distance fiber optics transmissions, they lead to spreading out of time impulse, 

and in consequence, crosstalk between channels in wavelength-division multiplexing 

(WDM) techniques and limitations in optical fiber throughput.  

Dispersion Shifted-Single Mode Fiber (DS-SMF) are characterized by gradient 

profile of refractive index, strongly negative dispersion in II transmission window 

(below 20 ps/nm·km) and zero dispersion for 1550 nm in III window. Their main 

application is a single-channel long distance transmission in III window. They are not 

applicable for multi-channel transmission, because the lack of dispersion causes 

crosstalks due to other nonlinear effect: four wave mixing (FWM). Therefore, in order 

to reduce nonlinear dispersion and, at the same time, exclude four wave mixing, Non 

Zero Dispersion Shifted-Single Mode Fibers (NZDS-SMF), which are 

characterized by low, but non-zero dispersion for whole transmission range of optical 

amplifiers EDFA (1530-1565 nm), were introduced. Low, but non-zero dispersion 

limits nonlinear effects of FWM and cross-phase modulation (CPM) and is thus far 

the best medium with application of multiplexing in transmission DWDM (dense 

wavelength division multiplexing) in III transmission window over long distances. 

Fig. 1.18. illustrates different types of single mode fibers with shifted dispersion 

applied in III optical window, 1550 nm. The region marked in blue denotes EDFA 

(Erbium Doped Fiber Amplifier) window and represents the wavelengths currently 

used in multiplexing techniques DWDM. 
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Fig. 1.18.  Different types of Dispersion Shifted-Single Mode Fiber. 

 single mode fibers without shifted dispersion (Non-DSF): zero dispersion 

GVD for 1310 nm 

 single mode fibers with shifted dispersion (DSF): zero dispersion GVD occurs 

for 1550 nm, application in single-channel TDM (Time Division 

Multiplexing), nonlinear effects cause problems for multi-channel techniques 

DWDM 

 single mode fibers with non zero shifted dispersion with positive inclination of 

D coefficient (+D) NZ-DSF: fibers similar to DSF, however zero dispersion is 

moved outside 1550 nm window. For 1550 nm the fiber is characterized by 

low, but non-zero dispersion GVD, the inclination of D wavelength coefficient 

is positive 

 single mode fibers with non zero shifted dispersion with negative inclination 

of D coefficient (-D) NZ-DSF: fibers similar to DSF, however zero dispersion 

is moved outside 1550 nm window. For 1550 nm the fiber is characterized by 

low, but non-zero dispersion GVD, the inclination of D wavelength coefficient 

is negative. 

 

1.4. Propagation Of Light In Optical Fibers. Electrodynamic Analysis. 

1.4.1. Step-Index Cylindrical Fiber 

 

Propagation of light in optical fibers is described by Maxwell equations, similarly to 

all other electromagnetic phenomena. The wave equation derived from the Maxwell 

equations describes propagation of light in optical fiber. If we make the following 

assumptions: 

 nonlinear polarization is negligible, 

 we can neglect the imaginary component of dielectric constant 
22 )/)(()(  cin  , because the loss in optical fiber is low in 

spectrum range of interest for fiber optics techniques, therefore 0 , 

 refractive index )(n  does not depend on core and cladding spatial 

coefficients (Fig. 1.12.a.), as it is in the case of step-index fibers, 

then the wave equation takes form of equation known as Helmholtz equation 
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where   000 



c

k  is the wave vector length (wave number), 0  and 0  

denote magnetic and dielectric permeability of free space, ),(
~~

rEE   is Fourier 

transform of electric field 
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 Propagation of light and mode analysis is described in details in numerous 

handbooks [2-9]. Let us consider the solution of equation (1.12). Equation (1.12) is a 

vector equation, therefore it is an equivalent of three differential scalar equation for 

three electric field E components. In Cartesian coordinate system those are Ex, Ey, Ez  

and this description is most proper for planar waveguides (Fig. 1.8.). For optical 

fibers, most commonly used in telecommunications, it is most convenient to use polar 

coordinates (r, , z ) because of cylindrical symmetry of optical fibers. Then, 

Equation (1.12) takes the following form: 
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Cartesian and polar coordinates are linked as follows: 

zzryrx  ,cos,cos   

Similar equation can be written for magnetic field strength H
~

. Full solution must 

therefore contain six components, however, taking into account four Maxwell 

equations, only two components are independent. Let us choose zE
~

 and zH
~

 ad 

independent components. Assuming that the z axis overlaps with optical fiber axis, we 

obtain the following scalar equation for electric field Ez component along the fiber 

axis: 
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














 ~
kn

z

~~

rr

~

rr

~
2

0

2

2

2

2

2

22

2

2

2
11


  (1.16) 

Of course, the fact, that the electric field component zE
~

 is directed along the fiber 

axis does not imply, that the electromagnetic wave seizes to be a transverse wave. The 

wave propagating in a fiber can show any polarization, which can be depicted as 

superposition of waves having their vectors in two mutually perpendicular planes 

(denoted as s and p polarization). Transverse magnetic (TM) waves, which electric 

field vector shows s polarization (in the plane of Fig. 1.19, which incorporates fiber 

axis as well), are characterized with non-zero electric field intensity Ez 0, along the 

fiber axis z, whilst magnetic field component Hz =0.  

On the contrary, in the case of transverse electric (TE) waves, electric field vector 

shows p polarization (in the plane perpendicular to that of Fig. 1.14), Ez = 0, whilst 

Hz 0. Fig. 1.19. depicts only one of the possible propagation planes of beam incident 

to and refracted at core-cladding interface. It means, that besides the cases shown in 

Fig. 1.19., there are modes having non-zero components of both fields Ez 0, Hz 0 

along the fiber axis z. Such modes are called hybrid and denoted EH and HE. 
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Fig. 1.19. Illustration of TM and TE modes. Index p denotes electric field intensity 

vector in the plane incorporating fiber axis, s – perpendicular to this plane.  

 

Let us apply the method of variable separation to solve the equation (1.16). we 

will be looking for the solution in a form:  

)z(Z)()r(RE
~

z           (1.17) 

Substituting equation (1.17) to (1.16) and dividing both sides of equation (1.16) by   

)z(Z)()r(R   we obtain:  

)kn
d

d

rdr

dR

Rrdr

Rd

R
(

dz

Zd

Z

2

0

2

2

2

22

2

2

2 1111







  (1.18) 

As we can see, right side of the equation does not depend on z, therefore the changes 

along fiber axis z do not influence the right side of the equation. This means, that the 

left side of the equation must be a certain constant (in general, a complex constant).  

Let us denote this constant as 2 , where 

 i          (1.19)  

As we expect the solution of equation in form of oscillating wave, therefore  must 

denote phase constant and is named propagation constant, while   describes 

attenuation (and oscillating wave fading away) in optical fiber. As the attenuation in 

optical fiber is low, we can assume with good approximation =0. The problem of 

attenuation will be discussed in Chapter 3. Therefore 

2

2

21


dz

Zd

Z
        (1.20) 

The solution of equation (1.20) is well known function  

)zexp(C)zexp(C)z(Z  21       (1.21) 

representing waves propagating in opposite directions along the fiber axis, where C1 

and C2 are the constants determined from boundary conditions. In further discussion 

we will consider only the wave propagating in the positive direction, making the 

assumption C2 =0. Solving the right side of equation (1.18) we obtain:  

)knrr
dr

dR

R

r

dr

Rd

R

r
(

d

d 2

0

2222

2

22

2

21
 






    (1.22) 

Right side of this equation does not depend on , thus the left side of the equation 

must be equal to a certain constant, which we will denote as –m
2
. Therefore we get  

)msin(C)mcos(C)(  43        (1.23)  
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where C3 and C4 are the constants determined from boundary conditions. Function 

)(  must meet the condition of rotational symmetry, )( = )(  2 , 

therefore m in equation (1.23) must be an integer. Finally, substituting 2  and m
2
 

constants into equation (1.18) we get 

0
1

2

2
2

2

2

 R)
r

m
h(

dr

dR

rdr

Rd
      (1.24) 

where  
2

0

222 knh             (1.25) 

The solution of equation (1.24) should exhibit oscillatory character in the core and 

decaying in the cladding. In order for this condition to be met, h must be a real 

number in the core, and imaginary number in the cladding, that is:  

1hh   for r<a and   2ihh   for r>a  (1.25.a) 

The solution for ordinary differential equation (1.24) for 1hh  , that is in the core, 

are Bessel functions. 

  

)rh(NC)rh(JC)r(R mm 1615     for  r<a  (1.26) 

Function mJ  is a Bessel function of the first kind, mN  is a Bessel function of the 

second kind and m order and is called Neumann function. 

Figures 1.20. and 1.21. depict Bessel functions of first and second kind. For r0 mN  

function approach minus infinity, and has no physical meaning. We can avoid it only 

if we assume that C6=0. Substituting equations (1.21), (1.23) and (1.26) to (1.17) we 

obtain 

)zexp()msinBmcosA)(rh(JE
~

mz   111    r<a  (1.27) 

 
Fig. 1.20. Bessel function of the first kind and m order 
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Fig. 1.21. Bessel function of the second kind and m order (Neumann functions) 

 

                               
Rys. 1.22.  Modified Bessel functions of the first and the second kind and m order  

Using the denotation (1.25.a) Bessel equation (1.24) for the core takes form 

0
1

2

2
2

22

2

 R)
r

m
h(

dr

dR

rdr

Rd
    r>a  (1.28) 

and its solution is  

)rh(KC)rh(IC)r(R mm 2827        (1.29) 

Function mI  is a modified Bessel function of the first kind, function mK  is a modified 

Bessel function of the second kind and m order. 

Fig. 1.22. shows Bessel functions of the first and the second kind. For r  mN  

function approach infinity, and has no physical meaning. We can avoid it only 

assuming that C7=0. Substituting equations (1.21), (1.23) and (1.29) to (1.17) we get 

)zexp()msinBmcosA)(rh(KE
~

mz   222   r>a (1.30) 

Following the similar procedure for magnetic field intensity vector H we can prove 

[5], that z component of magnetic field zH
~

 along the fiber axis equals 

)zexp()msinGmcosF)(rh(JH
~

mz   111   r<a (1.31) 

)zexp()msinGmcosF)(rh(KH
~

mz   222   r>a (1.32)             

where F1 , G1, F2, G2 are the constants which can be determined from boundary 

conditions. 
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Having determined two independent components zE
~

 and zH
~

 further four 

components can be calculated from Maxwell equations 
HiE   (1.33) 

EiH   (1.34) 

where the rotation operator in cylindrical coordinates is given by the following 

formula: 




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i
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i

r
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






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
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       (1.35)  

Using equations (1.33)-(1.35) we get 
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
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(1.39)

 

 

1.4.2. Type TE (Or H) Modes 

 

Let us consider TE type modes (Fig. 1.19.) first. For TE type modes we substitute  

0zE
~

, and 0zH
~

 in the direction z of the fiber axis, as formulated by equations 

(1.31)-(1.32) to (1.39) and we obtain 

)zexp()mcosGmsinF)(rh(J
rh

m
H
~

m 


  1112

1

  
r<a (1.40) 

)zexp()mcosGmsinF)(rh(K
rh

m
H
~

m 


  2222

2

 
r>a      (1.41) 

rom the condition of zH
~

 field continuity at the core-cladding interface from equations 

(1.31) and (1.32) we get  

)w(KF)u(JF mm 21          (1.42) 

 

where: ahu 1  ,   ahw 2  (1.43) 

and a is the core diameter. 

From the condition of H
~

 field continuity at the core-cladding interface from 

equations (1.40) and (1.41) we get  

mm K
h

F
)u(J

h

F
2

2

2

2

1

1  (w) (1.44) 
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As values 1F  and 2F  are positive, equations (1.42) and (1.44) are not contradictory 

only for m=0, since then H
~

=0 and the condition of H
~

 field continuity is no longer 

valid.  

For m=0 zH
~

 component from equations (1.31) and (1.32) takes form  

)zexp()rh(JFH
~

z  101 r<a  (1.45) 

)zexp()rh(KFH
~

z  202  r>a (1.46) 

Substituting equations (1.45) and (1.46) to (1.38) we get 

)zexp(
dr

)rh(dJ
F

h
H
~

r 


 10

1

1

 r<a (1.47) 

)zexp(
dr

)rh(dK
F

h
H
~

r 


 20

2

2

 r>a (1.48) 

Moreover, as it can be seen from equations (1.45) and (1.46), zH
~

 does not depend on 

 and zE
~

 =0, from equation (1.36) we obtain rE
~

  =0. 

Following analogous procedure we can determine E
~

 component via substitution of 

equations (1.45) and (1.46) to (1.37) 

)zexp(
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)rh(dJ
iF

h
E
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 r<a (1.49) 

)zexp(
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iF

h
E
~

r

  20

02

2

1
 r>a (1.50) 

From the condition of E
~

 and rH
~

 fields continuity at the core-cladding interface we 

get 

 )(KF
h

)u(JF
h

'' 02

2

01

1

11
   (1.51)  

 

and therefore  the characteristic  equation  for TE (or H ) type modes  

)w(K

)w(K

w)u(J

)u(J

u

''

0

0

0

0 11
                                                                      (1.52)                      

where F1  and F2 constants were eliminated using equations (1.51) and (1.42). 

Assuming that the expression (1.19) takes form  i  (when attenuation is 

negligible 0 ) relation (1.25) can be written as 
2

1

2

0

22

1 nkh        r<a  (1.53) 
2

2

2

0

22

2 nkh        r>a  (1.54)  

Multiplying the above equations by core diameter a and subtracting the respective 

sides of equations we get:  
222 wu    (1.55)     

where  

 

 

                                                                           (1.56)     

The quantity  in expression (1.56) is named normalized 

frequency, and  
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0

0

2




k   (1.56.a)           

Physical meaning of the quantity expressed by equation (1.56) we will understand 

later.  

To sum up, for TE type waves we obtain the following field components  

0zE
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                                                                                   r<a  

0zE
~

                                                                      r>a  
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z  202  r>a (1.57) 
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1.4.3. Type TH (Or E) Modes 

 

Following analogous procedure for type TM (E) waves, for which zH =0, we obtain 

the characteristic  equation  [5,7]  
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w)u(J

)u(J
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01 
                                                                                (1.58) 

where 1   and  2  are dielectric permittivities of core and cladding.  

 

1.4.4. Hybrid Modes EH And HE 

 

The only modes left for consideration are HE and EH, having non-zero components it 

the wave propagation direction. Substituting z components of electric and magnetic 

field (1.27), (1.30), (1.45), (1.46) to equation (1.37) we obtain [5,7] 
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From the condition of E  component continuity at the core-cladding interface we get 
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Because relation (1.61) must be fulfilled for each angle  therefore the arguments of 

trigonometric functions must equal to zero. 

We can distinguish the following cases: 

 

1) All constants in equation (1.61) equal to zero, which corresponds to trivial 

solution,  

2) B1 =B2 =F1 =F2=0, which corresponds to non-trivial solution, with non-zero 

values A1 =A2 =G1 =G2, 

3) A1 =A2 =G1 =G2=0, which corresponds to non-trivial solution, with non-zero 

values B1 =B2 =F1 =F2. 

The cases 2) i 3) describe mutually perpendicular solutions. They correspond to 

hybrid modes HE and EH. 

For the case 2) we obtain [5, 7] the following field components of hybrid type HE and 

EH 
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The correlations between constants can be found from the condition of zE
~

 and zH
~

 

field continuity  
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The condition of E
~

 field continuity provides the correlation [5,12] 
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,  

 

whereas the condition of continuity 

of normal component of electric 

induction E takes form [5,12]  
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Expressing A2 and G2 using equations (1.70) and (1.71), and assuming, that equation 

(1.19) takes form  i  (when attenuation is negligible 0 ) we obtain 

 

0
1111

10122


















 G

)w(K

)w(K

w)u(J

)u(J

u
Am

wu m

'

m

m

'

m    (1.74) 

 

0102

2

2

1
1

21 
















 mG

wu
A

)w(K

)w(K

w)u(J

)u(J

u m

'

m

m

'

m 





 (1.75) 

where u and w are expressed with equations (1.43). 

Finally, for hybrid modes HE and EH characteristic  equation takes form [5, 7] 
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1.4.5. Type TEmp, TMmp, HEmp, EHmp Modes 

 

So far we obtained the characteristic equations for three cases: 

 TE type modes (45) 
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 TM type modes (51) 

 EH and HE hybrid modes (1.76). 

Solving the characteristic equations we can determine all components of electric and 

magnetic fields. Equations (1.52), (1.58) and (1.76) cannot be solved analytically, 

only graphically or numerically. Let us assume, that 1
1

2

1

2 
n

n
s




, because 

the difference of refractive indexes in real optical fiber is very little. This 

approximation is called weakly guiding approximation and means that modes 

propagate almost parallel to symmetry axis of optical fiber. In this case the 

characteristic equation (1.76) takes form  
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is named the normalized propagation constant, whereas 

0k
nef


   (1.82)  

is called the effective refractive index. The effective refractive index is from the range 

between the refractive indices of the core and the cladding 

12 nnn ef    (1.82.a) 

Characteristic equation (1.80) (similarly as characteristic equations (1.52), (1.58) and 

(1.76), derived without weakly guiding approximation assumption) has several 

solutions for propagation constant  from equations (1.81-1.82) (that is for particular 

values of u and w, therefore for normalized frequency defined by equation (1.56)), for 

each integer value m indicating the order of Bessel function Jm and Km. Let us mark 

the solutions with index m and arrange the solutions for consecutive values of 

propagation constant  from the smallest to the highest using index p. 

 

Each eigenvalue of characteristic equation mp  corresponds to a particular structure of 

electromagnetic field, which is called a mode. For each value of propagation constant 

mp the solutions for magnetic and electric fields can be obtained from equations 

(1.57) or (1.62)-(1.69). The intensities of magnetic and electric fields will be marked 

with two indexes m and p. Therefore we will obtain fields type TEop, TMop  and  

HEmp,  EHmp.  

 

As we can see from the discussion thus far, propagation constant  is the key 

value in the electrodynamic analysis of modes propagating in optical fibers. Its 

physical meaning is the z component of wave vector 



 sinnk

f

10 , 

z component is directed along the optical fiber axis, while   angle is the incident 

angle at core-cladding interface. 
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1.4.6. Cut-Off Frequency 

 

The number of modes propagating in optical fiber depends on core diameter a, the 

index of refraction difference between core and cladding n1–n2 and the wavelength of 

wave propagating in optical fiber 0. We will prove, that the number of modes 

depends on previously derived (1.56) normalized frequency 2

2

2

1

0

2
nn

a





 . 

Besides, we will show that the given mode can propagate in optical fiber only under 

condition that normalized frequency  is higher than certain value, characteristic for 

each mode, named cut-off frequency. We will prove, that if 2.405 the characteristic 

equation has no solution, that is there exist no TEop or TMop type mode. The only 

mode propagating without limits is hybrid mode HE11, which cut-off frequency is 

zero.  

The optical fiber which propagates only one mode HE11, called primary mode, is 

named single-mode fiber. As the value of  increases, so does the number of solutions 

(modes). Therefore TEop mode can propagate only when normalized frequency  

exceeds certain value op, called cut-off frequency of TEop mode. The optical fiber 

which propagates more than one mode is called multimode fiber. Fig. 1.23 shows the 

dependency of propagation constant B, expressed by equation (1.81) on normalized 

frequency  . As it can be seen for 2.405 the only mode propagating without limits 

is a hybrid mode HE11, which cut-off frequency is zero. For higher values of   modes  

TEop and TMop as well as hybrid modes of higher order are propagated. 

                     
 

Fig. 1.23. The dependency of propagation constant B, expressed by equation (1.81) on 

normalized frequency  , where B       and v  

 

Below we will show where does the condition of 2.405 arise from and state the 

term of cut-off frequency more precisely.  

Characteristic equation (1.81) for modes EH and HE takes the form:  




















)w(K

)w(K

w)u(J

)u(J

uwu
m

m

'

m

m

'

m 1111
22

  (1.83)  

Equation (1.52) takes the form 
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)w(K

)w(K

w)u(J

)u(J

u

''

0

0

0

0 11
    (1.84)  

Equation (1.58) takes the  form 

)w(K

)w(K

w)u(J

)u(J

u

''

0

0

0

0 11
       (1.85)  

if we introduce weakly guiding approximation assumption 1
1

2

1

2 
n

n
s




  

Using the properties of the Bessel function 

)u(uJ)w(mJ)w(uJ mm

'

m 1    (1.86)  

)w(wK)w(mK)w(wK mm

'

m 1     (1.87)  

m

m

m J)(J 1     (1.88)  

mm KJK     (1.89)  

 

it can be proved [8], that the characteristic equations take form 

)w(K

)w(K
w

)u(J

)u(J
u

m

m

m

m 11      (1.90)  

When the mode cannot propagate in optical fiber, normalized propagation constant 

B=0 ((1.81) and Fig.1.23), that is when w=0, whilst normalized frequency (1.55)-

(1.56) takes the value =u and has the physical meaning of mode cut-off frequency 

om, that is the frequency above which particular mode can be propagated in optical 

fiber. 

 uom     (1.91)  

Because for w=0, 
)w(K

)w(K

m

m 1  takes a finite value, therefore (1.90) equals 

01 

)u(J

)u(J
u

m

m   .  (1.92)  

As it arises from equation (1.92), in order to find cut-off frequency the roots of Bessel 

function must be found 

 0
1




)u(J
m

    (1.93) 

that is for m=1 (HE11 mode) we look for the root of J0 function which equals 2.405, as 

it can be seen in Fig. 1.15. We now understand why in the range of normalized 

frequencies  

40520 .     (1.94)  

only one mode is propagated - HE11, which cut-off frequency equals zero. This kind 

of optical fiber is called single-mode. Only above the frequency om=2.405 optical 

fiber becomes multimode. First it starts propagating TE01 and HE21 modes, and 

afterwards the modes with higher indexes (Fig. 1.23). The optical fiber becomes 

multimode. The number of modes propagated in optical fiber depends on its structure, 

expressed by equation (1.56)  

2

2

2

1

0

nn
a





  

that is diameter a, wavelength of propagated wave 0  and refractive indexes of core 

n1 and cladding n2. If the cut-off frequency equals 2.405 for single-mode fibers, we 
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can calculate the wavelength of propagated wave. For typical single-mode fibers 

n1-n2=0.005, a=5 m and we obtain  0=?  m, that is close infra-red range. In order 

for optical fiber to be able to propagate single mode from visible range (400-800 nm) 

it would have to have a very small core diameter a<2m. 

 

1.4.7. Linear Polarization Modes LPmp 

 

In reality single-mode fiber propagates two modes with orthogonal polarization. 

Mode HE11 consists of three components Ex , Ey, Ez  and ether component Ex or Ey, 

dominates. Besides, linear combination of several modes of similar characteristic 

properties produces the resultant electric field, linearly polarized, of negligible 

component in the light propagation direction in fiber  Ez=0. This kind of modes is 

called linearly polarized Lmp. It can be proved [7], that 

pp HELP 10   

pppp HEHELP 0021    (1.95)  

p,mp,mmp EHHELP 11     m >2      

 Two modes with orthogonal polarization are degenerated, i.e. characteristic 

equation has two solutions, corresponding to the same propagation constant  defined 

by equation (1.19) and connected with effective refractive index by formula (1.82). 

Degeneration corresponds to ideal conditions with no birefringence. In reality 

stresses, density changes, random changes of core shape and diameter, cause the 

formation of discriminated optical axes, therefore birefringence phenomenon. In 

consequence two orthogonal components travel in optical fiber as ordinary and 

extraordinary beams propagating with different speeds. In consequence the 

degeneration of two modes with orthogonal polarization is eliminated. Different 

speeds of two orthogonal components generate phase difference changing during 

propagation along fiber and random mixing the two components which causes 

polarization change. As we mentioned in Chapter 3 there are optical fibers which 

preserve linear polarization along one of the fiber principal axes.  

We will show after [5, 7] that hybrid mode indeed consists of two components with 

mutually perpendicular polarization. In weakly guiding approximation assumption, 

that is when  

1
1

2

1

2 
n

n
s




       (1.96)  

  

we proved that characteristic equation for hybrid modes HE and EH takes form (1.80) 

 )w(X)u(Y
wu

m mm 









22

11
  (1.97)  

and the propagation constant  is given by formula 

0     (1.98)  

Substituting equations (1.95) and (1.98) to (1.74) we obtain the correlation between 

constants A1 and G1. 

1

0

1 AG



   (1.99)  

where + sign corresponds to HE modes, while – sign corresponds to EH modes.  
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Substituting equation (1.99)  to (1.62) and (1.64) we obtain the components along 

optical fiber axis z  

mcos)rh(JAE
~

mz 11   (1.100) 

 





msin)rh(JAH mz 1

0

1   (1.101) 

Following the analogous procedure for F1 and B1 constants in (1.61) for orthogonal 

solution we obtain 

 1

0

1 BF



   (1.102) 

where + sign corresponds to HE modes, while – sign corresponds to EH modes and 

components along z axis from equations (1.27) and (1.31) 
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mz 11   (1.103) 





mcos)rh(JBH mz 1

0

1



   (1.104) 

because A1 and G1 =0 for this case.   

Transverse components x and y  of the field we can calculate from Maxwell equations 

in Cartesian coordinate system, not in spherical coordinate system, which we have 

used thus far. 
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Because field components (1.86) and (1.87) are expresses in spherical coordinates, in 

equations (1.105)-(1.108) the exchange of coordinates have to be performed, using the 

correlation 
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  (1.109) 

and using Bessel function properties 

)u(uJ)u(mJ)u(uJ mm

'

m 1  

)u(uJ)u(mJ)u(uJ mm

'

m 1   (1.110) 

In order to obtain components of linearly polarized modes Lmp several modes of 

similar characteristic properties must be combined so that obtained resultant electric 

field is characterized by negligible components in light propagation direction 0zE
~

 

and 0zH
~

. This condition is met for combination described by equations (1.95). 
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Substituting equations (1.100)-(1.109) to (1.95) we obtain four electromagnetic field 

components for four linearly polarized modes Lmp   

We get the modes with polarization in x direction   

mcos
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and the modes with polarization in y direction   
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while mE  denotes maximum value of electromagnetic field intensity at the core-

cladding interface. It arises from equations (1.111)-(1.113) that for m=0 only two 

non-zero modes L0p exist. 

The components can be calculated from Maxwell equations and it can be proved, that 

components in propagation direction z are negligible as compared to transverse 

components x and y. 
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Fig. 1.24 presents transverse intensity distribution for several initial linearly polarized 

modes. For L0p two identical mutually orthogonal components exist. For higher 

indexes four modes exist, which differ not only in polarization, but in intensity 

distribution orientation as well. 
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Fig. 1.24 Intensity distribution in cylindrical optical step-index fiber core for linearly 

polarized modes.  

 

 

                               
Fig. 1.24 Intensity and orientation field distribution in cylindrical optical step-index 

fiber core for linearly polarized LP11 mode. 

 

 

 

1.5. Propagation Of Light In Optical Fibers. Electrodynamic Analysis. Planar 

Optical Waveguide. Graphical Solution Of Characteristic Equation. 
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Thus far we only analyzed the modes in cylindrical step-index fiber. Because of the 

fiber geometry we used spherical coordinates. The solutions for Maxwell equations 

are Bessel functions, while continuity conditions and conditions arising from 

symmetry allow to obtain characteristic equation for propagation constant . This 

parameter is a key quantity in electrodynamic analysis of modes propagating in 

optical fibers. It has physical meaning of wave vector 



 sinnk

f

10 , z 

component is directed along fiber axis, while  is the incident angle at core-cladding 

interface. 

 

                     
 

Fig.1.26. Planar waveguide.  

 

In coordinates system applied in calculations x axis is perpendicular to base and 

coating interface 
22

00 h
x

h
 , where h0 is the thickness of core layer of planar 

waveguide, light propagates along z axis. For calculation simplification we assume 

that the dimension of waveguide in y axis direction is indefinite. We also make the 

assumption that planar waveguide is symmetric (refractive indexes of base n2 and 

coating are identical n3= n2). Core refractive index n1 is higher from both n2  and n3. 

The solution of Maxwell equations for planar waveguide presented in Fig. 1.8. is 

much simpler [6]. Below we will discuss Maxwell equations for TE type modes. In 

light of the above made assumptions, wave field is restricted only in x direction, 

therefore y derivatives equal zero, than 

0 zxy E
~

E
~

H
~

      (1.117) 
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222 knh    , where  i      (1.119) 

 denotes phase constant and is named propagation constant, while   describes 

attenuation (and decay of oscillating wave) in waveguide. The solution of equation 

(1.118) should have oscillating characteristics in core and decay in coating. In order 

for this condition to he met, h has to be real in the core and imaginary in coating, thus 
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Because attenuation in waveguide is low, we can assume with good approximation 

=0, therefore the equations (1.121) and (1.122) take form 
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The solution of equation (1.123) in core is oscillating wave  
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~

y   for core 
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where a is integration constant 

while outside core the solution of equation (1.124) is attenuating wave 
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Dividing bilaterally the equations (1.130) and (1.131) and multiplying both sides by 
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 we obtain 
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From equations (1.125) and (1.126) we get 
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Let us introduce the term of normalized frequency, similarly as for cylindrical fiber 

equations ((1.55)-(1.56.a)), by multiplying both sides of equation (1.133) by 
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From the introduced normalized frequency   we can next write 
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Therefore, equation (1.132) can be expressed using normalized frequency   as below 
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or 
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where 
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The right side of equation (1.137)  

  2

1
22   o         (1.139) 

describes a circle of 0  diameter on (, ) plane.  

Equation (1.137) serves as characteristic equation, as it allows to calculate 

propagation constant . Equation (1.137) can be solved graphically. Intersection point 

of a circle of 0  diameter described by equation (1.139) and tg  function from 

equation (1.137) allows to calculate propagation constant.  

 

 
Fig. 1.27. Graphic illustration of solution of planar symmetrical waveguide equation. 

Point of intersection of a circle described by equation (1.139) and tg  function from 

equation (1.137) allows for determination of propagation constant. 

 

 

Normalized frequency from equation (1.134) has the physical sense of cut-off 

frequency om, that is the frequency, below which light cannot propagate in 

waveguide core, when h2 in formula (1.133) equals zero, which arises from equation 

(1.126), as  cannot be lower than 2

0

2

2 kn . In this case  = 0  . From the graphical 

solution presented in Fig. 1.27. it arises that for frequencies o satisfying the condition 
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only one TE mode exists and therefore planar waveguide is single-mode. For higher 

0  values planar waveguide becomes multimode.  

For planar waveguide it is very easy to derive the dependency between propagation 

constant B expressed by formula (1.81) on normalized frequency   presented in 

Fig.1.23. Using the formula for normalized propagation constant B from equation 

(1.81) and notation which we introduced for planar waveguide (1.135) and (1.138) 
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where 
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
  

we obtain 
 

   
Fig. 1.28. Dependency of normalized propagation constant B on normalized 

frequency    for planar symmetrical waveguide calculated from equation (1.145) 
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that is 
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This is the dependency of normalized propagation constant B on normalized 

frequency    for planar symmetrical waveguide. 

 

1.6. Propagation Of Light In Optical Fibers. Analysis Of Optical Path And 

Electrodynamic Analysis For Gradient-Index Cylindrical Fiber [6] 
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In gradient-index fiber the profile of core refractive index is not constant and depends 

on distance r from central axis. Most often this kind of optical fibers is characterized 

by profile in which core refractive index is described by the equation 

 

2

0
2

1
rnn)r(n r        (1.146) 

 

and is a function of distance r from fiber axis and n0>>nr.  

 

             
Fig. 1.29.  Refractive index profile in gradient-index fiber. 

 

Therefore the assumption which we used in chapter 4.1., that refractive index )(n  is 

independent from spatial components of core and cladding, is not valid for gradient-

index fibers. 

First of all, we would like to understand why the tracks of beams in gradient-index 

fiber are sinusoidal or helical, like in the Figure below. 
 

 

Fig.1.30. Beam trajectories in gradient-index fiber.  
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Fig. 1.31 Beam trajectories in gradient-index fiber 

 

Using Fermat’s principle   
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or, after conversion 
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because 

0nnr   ,      and      222 yxr    - is negligible therefore: 
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we obtain the equation describing radiation pathway in gradient-index fibers 

(parabolic) 
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which actually has the character of harmonic function, as presented in Fig. 1.30. 
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Secondly, we are interested in finding the cross-section of electromagnetic fields for 

gradient-index fibers. We follow the similar procedure as described in Chapters 4.1 

and 5, that is we use Helmholtz equation in form 

  0222
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where 
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and refractive index is described by function 
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where 
a

n
G

21 
, 21 nnn  , and a is core diameter. 

Substituting (1.155) to (1.153), applying field coordinates separation in the plane 

perpendicular to fiber axis z 
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we obtain equations for  xX  and  yY  components, which solution are Hermite-

Gauss functions mH  and pH . Finally we obtain the description of field intensity in 

form 
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where:    
k

G
w

22     

 

For  m=0  i  p=0    Hermite functions mH  = pH =1, which means that basic mode is 

characterized by transverse Gaussian distribution in gradient-index fiber. 

 

1.7. Production of glass fibers 

 

Crucial factor in production of optical fibers with long distance transmission ability is 

technique of production, modification and control the following fiber parameters: 

 Attenuation 

 Non-linearity 

 Dispersion 

 Refractive index 

 Core doping with rare earths elements atoms. 

Optical fibers are produced from different materials: 

 Glass optical fibers from pure quartz and silica SiO2 (which also can be 

doped), core diameter 5-10 m (SMF), 50/62.5 m (MMF), transmission for 

distances of kilometers. For telecommunications only this type of material is 

used; 

 Fluoride glass fibers, among which the one of greatest importance is type 

ZBLAN glass (ZrF, BaF2, LaF3, AlF3, NaF in proportion 53:20:4:3:20) 

 Fluoride glass fibers (KCl, TlBrI), 
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 Plastic optical fibers APF (both core and cladding are made of PMMA), core 

diameter 980/1000  m, 650 nm, attenuation is about 220 dB/km, maximum 

transmission distance of the order of 50 m. 

 Plastic optical fibers PCF (core is made of glass, cladding made of plastic), 

core diameter 200/300 m, 800 nm, attenuation – c.a. 6 dB/km, maximum 

transmission distance – up to 1km, 

 Semiconductor optical fibers made of epitaxial layers (e.g. GaAs/AlGaAs) 

 Dielectric layers (Ta2O5, ZnO, Si3N3/SiO2). 

Most commonly used optical fibers are made of pure silica glass ( 2SiO ). Cladding is 

made of glass, while core glass is admixed with proper amount of dopants – usually 

germanium or lead are admixed – which increase the index of refraction of core as 

compared to that of cladding. 

Fig. 1.32. presents typical method for optical fibers production. It belongs to the 

group of Chemical Vapour Deposition (CVD) methods and consists in deposition of 

silicon dioxide doped with other oxides in vapour phase. This method allows for 

deposition of numerous layers of different refractive indexes in order to obtain 

gradient-index fiber. In optical fiber production using this method the rotating silica 

substrate tube of c.a. 15 mm in diameter and 1 m length is subjected to an internal 

flow of material in gaseous phase. The tube constitutes cladding material and blown-

in material creates the core. Core material is the mixture of silicon chloride ( 4SiCl ) 

and admixture elements chlorides (e.g. germanium 4GeCl ). The deposition is 

accomplished by an external, local application of high temperature of the order of 

1200-1400 
0
C. In such temperature chlorides react with oxygen from carrier gas 

2224 2ClSiOOSiCl   

2224 2ClGeOOGeCl   

Resulting from the above reactions silica ( 2SiO ) powder and germanium oxide 

deposit on the inner surface of the quartz tube. The obtained powder is sintered into a 

thin layer of about 10 m. Refractive indexes are controlled by application of 

adequate admixtures. The admixture of B2O3 and F2  causes decrease in glass index 

value, while admixture of GeO2, P2O5, Al2O3 causes increase in glass index value. 

 

 

 

  
 

Fig.1.32. Diagram illustrating CVD method 
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After the deposition process is finished the temperature in raised to the melting point. 

Applied temperature depends on the kind of glass, pure quartz glasses are 

characterized by high melting points (2000 
0
C), however, the admixture of sodium or 

calcium oxide lower melting temperature to 1400 
0
C. In melting temperature the outer 

tube softens, begins to melt and contract. This process, called collapse, leads to 

formation of perform, which is next drawn into fibers in the plastic heat treatment 

process. The quality of perform depends on collapse speed and homogeneity, which is 

dependant on uniformity of rotation during heating and oxygen pressure inside the 

tube. The parameters influencing perform quality depend on silica deposition method 

on quartz cladding. CVD method was improved for fiber optics applications by 

Modified Chemical Vapor Deposition MCVD method (Fig. 1.33.), Plasma Chemical 

Vapor Deposition (PCVD), Plasma Modified Chemical Vapor Deposition (PMCVD), 

Outside Vapor Deposition (OVD) and Vapor Axial Deposition (VAD). 

CVD, MCVD, PCVD and PMCVD methods are similar in their main idea, however 

they differ in the speed of glass creation, which is known to influence its isotropy and 

lack of distinguished optical axes arising from local stresses. 

PCVD method is shown in Fig. 1.34. In this method, the speed of glass deposition is 

higher than in CVD method, due to application of plasma of temperature 1200
0
C 

produced in microwave oven (2.5 GHz) which travels along the tube with the speed of 

several meters per minute, substituting the torch. This method is applied in 

telecommunication optical fibers. In PMCVD method plasma reaches the temperature 

close to 9000 
0
C, which substantially increases deposition speed of silica glass. 

 

 

                   
Fig.1.33. Diagram illustrating MCVD method 
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Fig.1.34. Diagram illustrating PCVD method 

 

 

 
Fig.1.35. Diagram illustrating PMCVD method  

 

The process of perform generation in OVD method is basing on different principal. 

The products of low energy reaction between silicon (and admixtures) chlorides and 

oxygen deposit on graphite rod, which is subsequently removed due to different 

thermal expansion coefficients of the rod and silica. The obtained silica glass tube is 

sufficient for drawing a fiber of 30-40 km length.  
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Fig.1.36. Diagram illustrating OVD method 

 

Preform is subsequently used for production of the fiber. The diagram of fiber 

fabrication  system is presented in Fig. 1.37. 

                    
 

Fig.1.37.  Diagram of fiber fabrication system 

 
Other methods of optical fiber drawing include: 

 double crucible method in which the core and cladding melts 

are formed separate crucibles and combined in the drawing 

process (Fig. ). This method can be used for step-index fibers 

production, as well as gradient-index fibers. Gradient-index 

fibers are obtained by ion exchange between different kinds of 

glasses in the process of diffusion. This method is less 

commonly used and is applied for drawing fibers no longer 

than 10 km.  

 “rod-in-tube” method, in which the core and cladding are cast 

separately, positioned concentrically, than heated up to glass 

softening temperature and drawn into thin threads. 
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Fig.1.38.  Diagram of double crucible system 

Separate group of optical fibers constitute polarization maintaining fibers, already 

mentioned in Chapter 3. In some applications maintaining constant polarization in 

optical fiber is crucial, e.g. fiber optics interferometers, fiber optics lasers, sensors, 

optoelectric modulators, coherent transmission and integrated optical circuits 

coupling. Moreover, in all optical fibers, in lower or higher extent, attenuation 

depends on polarization and impedes signal transmission in optical fiber. In 

polarization maintaining fibers HB (high birefringence) type birefringence must be 

produced by design. In this case random polarization changes resulting from density 

fluctuations and temporary stress axes become negligible, as they are masked by 

controlled, deliberately introduced birefringence. If we align light polarization and 

distinguished optical axis of fiber it will not change during propagation along the 

fiber. We distinguish internal and induced birefringence. Internal birefringence is 

achieved in fiber production process, by shaping the perform in order to obtain the 

core of adequate shape or suitable refractive index profile. Usually it means elliptical 

core shape (Fig. 1.39) or elliptical refractive index profile. This kind of optical fibers 

is called low birefringence (LB). 

                                                

 
Fig.1.39. Optical fiber maintaining polarization by elliptical core form.  

 

Another method of birefringence induction in fiber is creating internal stresses. 

Fig. shows the structure of most common fibers which maintain polarization by 

internal stresses creation. As we can notice in Panda type fiber cross-section, next to 

the core there are two additional orifices if cladding which are filled with rods made 
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of material of higher thermal expansion coefficient than cladding (usually borosilicate 

glass). In fiber drawing process stresses arise along the fiber distinguished axis, which 

produce controlled birefringence. This also causes that the fiber acts as polarization 

analyzer and transmits only the light in one polarization plane. Different solutions are 

presented in Fig. . For example, in D type fiber, cladding is beveled in the manner that 

the plane is parallel to optical axis of the fiber. In elliptical fibers, core cross-section is 

shaped as an ellipse. [R.B. Dyott, Elliptical Fiber Waveguides, Artec House, Boston, 

1995] 

 

 
Fig.1.40.  Structure of polarization maintaining optical fibers.  

 

1.8. Waveguides Optical Windows  

 

 
Fig .1.41. Attenuation dependence  on wavelength.  
 

Table 1.1.     Optical windows. 

 

Optical window Wavelength [nm] Attenuation [dB/km] 

I 850 ~3 

II 1300 0,3 – 0,5 
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III 1550 0,18 – 0,3 
 
Optical signal propagating in optical fiber is a subject to attenuation. First optical 

fibers were characterized by so high attenuation, that their wide use was not projected, 

especially it seemed impossible to apply them for long distance transmissions. In 

1972 American company Corning Glass first introduced multimode optical fiber with 

attenuation of 4 dB/km for wavelength 850 nm.  

Attenuation has different causes, the most important of which are: 

 Rayleigh scattering (T 4

1


), caused by optical fiber material (glass) 

density fluctuations,  

  200 nm (0.2m) absorption in UV region from valence to conduction 

band,  

 far IR absorption for II and III harmonic component (1.38 m and 0.95 

m) of oscillating vibration for O-H bond in OH
-
 ion or water molecule, 

 far IR absorption for vibrational resonance absorption for both OH
- 

 and 

Si-O bond in silica (1.23 m) 

 IR absorption for vibrational resonance absorption for Si-O bond (9 m), 

 Absorption of metal ions (Cu
+2

, Cr
+2 

, Fe
+2

) admixtures and hydrogen H2 

(1.24 m), 

 Irregularities in optical fiber structure (microbends, diameter fluctuations) 

Dispersion and absorption cause that dependency of attenuation of quartz glass 

correspond to the characteristic presented in Fig. and Table . As we notice, attenuation 

in visible range is very high, of the order of 30 dB/km. Approaching IR, in the range 

of 850-860 nm attenuation averages only about 3 dB/km. Around the wavelength 

0.95 m attenuation increases because of absorption for overtone (upper partial) 

oscillating vibration O-H bond in OH
-
 ion or water molecule (I water peak). Range of 

frequencies 850-860 nm is called I optical window. Between I and II water peak 

(1.38 m) II optical window with attenuation of order of 0.5-0.3 dB/km is located. 

Behind the water peak of 1.38 m III optical window extends with lowest attenuation 

of the order of 0.2 dB/km. Because of very high signal intensity loss, I optical window 

in the range 850-860 nm, historically the oldest, is currently applied for distances up 

to a dozen or so kilometers, e.g. in LAN networks, and is characterized by data flow 

capacity below Gb/s
.
km. In I optical window multimode step-index fibers are applied. 

Despite high attenuation, cheap light sources – electroluminescence diodes, cause the 

window to be attractive. In II window, which employs radiation of 1310 nm, more 

expensive fibers are applied – multimode gradient-index and single mode fibers. 

Because of much lower attenuation signals are transmitted over longer distances, up 

to 100 km, without regeneration, and transmission itself is faster, up to 80 Gb/s
.
km. In 

III optical window we can distinguish two bands: C (1550nm) and L(1625 nm). In 

this range single mode fibers are used. Thanks to low attenuation signals are 

transmitted over longer distances, up to 200 km between regenerators, and throughput 

can reach over 200 Gb/s
.
km. Together with development in fiber production 

technology it became possible to overcome attenuation barrier around 1400 nm, 

caused by OH
-
 ions absorption. The band used in this range is named E band. Table 

presents transmission bandwidths currently utilized in multiplexing techniques WDM, 

and Fig. illustrates the development in minimizing the attenuation in individual 

spectral regions in 1980s and 1990s.  

Table 1.2.  Transmission windows utilized in multiplexing techniques WDM. 
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Window 
 

Wavelength (nm) 

I band 

 
850  

II    band O 
 

1260-1360 

V    band E 

 

1360-1460 

S band 

 

1460-1530 

III   band C – erb window 

 

1530-1565 

IV    band L 

 

1565-1625 

VI band U 1625-1675 

 

 

 

 
Rys.1.42. Transmission bands utilized in multiplexing techniques WDM.  

 

 
Fig.1.43. Spectral range used nowadays in optical fibers. 
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1.9. Generations of Optical Fiber Transmission 

 

The history of fiber optics techniques development was presented in numerous 

monographs [1-6]. Thus here we will only discuss abridgement showing successive 

phases of fiber optics techniques development. We can distinguish five generations: 

First generation – Optical fibers were used were used for the first time by American 

Army in early 1970s. in order to improve communications. American Navy first 

installed fiber optics telephone line. Next, in 1976 the Air Force developed their own 

fiber optics programme, known under the name Airborne Light Optical Fiber 

Technology (ALOFT). Civilian applications begun in 1977, when both AT&T and 

GTE installed fiber optics telephone system in Chicago and Boston. The first fiber 

systems worked in first optical window, 850nm, with optical loss c.a. 4dB/km and 

throughput below 50Mb/s, utilizing multimode step-index fibers. 

Second generation – had been developing since 1987, when most of the companies 

moved their transmissions to II optical window of 1310 nm and attenuation about 

0.5 dB/km with application of single mode fibers with close to zero dispersion. 

Third generation – started in 1977 by Nippon Telegraph and Telephone (NTT) by 

utilizing the transmission in III window, 1550 nm, it developed in 1990s. 

Transmission in III window is characterizes by low attenuation (from 0.16 to 

0.2 dB/km) which greatly increases the range (without regeneration up to 300 km). 

The main disadvantage is high dispersion (15 – 20 ps/km*nm). 

Fourth generation – in IV window close to 1625 nm, is currently being developed. 

Even though attenuation in IV window is comparable to that of III window, it 

considerably simplifies introduction of broad-band optical amplifiers EDFA and 

wavelength division multiplexing WDM. 

Fifth generation – is the newest achievement in soliton transmission, which 

theoretically lead to indefinite increase in transfer capacity. In 1990 Bell Labs sent 

2.5 Gb/s signal for the distance of 7500 km without regeneration. The system utilized 

soliton laser and optical amplifier EDFA. In 1998 the same company sent 100 

simultaneous signals, each with the speed 10 Gb/s, using WDM technique over 

400 km distance, thus total throughput reached Tb/s (1012 bites per second).  

Other records in fiber optics transmission development are presented below: 

1990-1995  2.5 Gb/s in single fiber, 1 channel, TDM, 80-150 km without regeneration 

1997   10 Gb/s in single fiber, 1 channel, TDM 

RECORDS in backbone networks DWDM in single fiber: 

-September, 2000, Alcatel, 5.12Tb/s 

-October, 2000, NEC, 6.4Tb/s on the distance of 186 km 

- 2003, Alcatel, 10.1Tb/s on the distance of 300 km and 5.0 Tb/s in the range up to 

2000 km 

PRACTICAL APPLICATIONS (2003)  in backbone networks DWDM in single 

fiber: 40 Gb/s for single wavelength , 160 channels, 40Gb/s*160=6.4 Tb/s. 
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Summary 

 

Table 1.3 

 

Optical fiber type 

 

 

Characteristics 

MMF - Multi Mode Fiber 850nm, useful on short distances, not 

applicable in multiplexing technologies 

WDM, high attenuation about 4dB/km, 

high dispersion, low throughput below  

1Gb/skm 

 

Standard SMF -  Single Mode Fiber ITU-T G.652 standard recommendation, 

step refractive index, zero dispersion in II 

optical window, high dispersion in III 

optical window 1550 nm, about 17 

ps/nm*km, low attenuation and low 

susceptibility to non-linear effects in III 

optical window, suitable for single-

channel applications in II window and in 

multi-channel applications in multiplexing 

technologies DWDM on short distances.  

DS- SMF – Dispersion Shifted-Single 

Mode Fiber, 

G.653 standard recommendation, gradient 

refractive index, strongly negative 

dispersion in II window (below 20 

ps/nm*km) zero dispersion for 1550 nm in 

III window, application in single-channel 

transmissions over long distances in III 

window, little suitability in multi-channel 

transmission in III window, because lack 

of dispersion causes cross-talk as the result 

of four wave mixing FWM. 

 

NZDS- SMF – Non Zero Dispersion 

Shifted-Single Mode Fiber 

G.655 standard recommendation, little but 

non-zero dispersion in whole optical 

amplifiers EDFA transfer range  (1530-

1565 nm) limition non-linear effects of 

four wave mixing FWM and cross phase 

modulation CPM, thus far the best 

medium for DWDM transmissions in III 

window over long distances. 

ITU-T International Telecommunication Union  – Telecommunication Standarization 

Sector 

 

Table.1.4.  Non Zero Dispersion Shifted-Single Mode Fiber NZDS- SMF 

 

 

True Wave 

1994, Lucent Technologies, True Wave + 

and True Wave – variants (alternating 

dispersion) allowed to achieve without 
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regeneration transmission up to about 

1000 km with speed 2.5 Gb/s or 300 km z 

with speed 10 Gb/s 

All Wave Bell Laboratory (Lucent), transmission in 

all four optical windows II, III, IV, V. 

Thus far transmission in V window was 

unavailable because of high attenuation 

caused by OH
-
 ions absorption 

LEAF Large Effective Area, 1998, Corning , 

lower noise, allows to increase the 

distance between consecutive EDFA 

amplifiers to over 100 km 

TERALIGHT 1999, Alcatel, zero dispersion for 1440 

nm, slightly positive dispersion 

inclination in whole transmission range of 

EDFA amplifiers, perfect fiber for long 

distance multi-channel transmissions 

UWDM 
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Attachment  

 

Physical quantities in Maxwell equations 

 

Symbol Physical quantity SI unit Denotation  

E Electric field intensity Volt per meter V/m 

D Electric induction Coulomb per square meter C/m
2 

P Polarization - - 

H Magnetic field intensity Ampere per meter A/m 
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M Magnetization - - 

j Current density Ampere per square meter A/m
2
 

B Magnetic induction Tesla T 

 Electric charge density Coulomb per cubic meter C/m
3 

 Electric conduction Siemens per meter S/m 

 Magnetic permeability Henr per meter H/m 

 Electric permittivity Farad per meter F/m 

 

Symbol Physical quantity Value 

c Light speed in free space 2.998 · 10
8
 m/s 

0 Magnetic permeability of free space 4p · 10
-7

 H/m 

0 Electric permittivity of free space 8.854 · 10
-12

 F/m 

 


