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3. Dispersion types  
 

 

Dispersion represents a broad class of phenomena related to the fact that the velocity of the 

electromagnetic wave depends on the wavelength. In telecommunication the term of dispersion is 

used to describe the processes which cause that the signal carried by the electromagnetic wave and 

propagating in an optical fiber is degradated as a result of the dispersion phenomena. This 

degradation occurs because the different components of radiation having  different frequencies 

propagate with different velocities. 
We distinguish various kinds of dispersion and all of them will be discussed  in this chapter: 

 

 

1. Chromatic dispersion 

 Waveguide dispersion (optical) 

 Material dispersion 

 Polarisation dispersion 

2. Mode dispersion 
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These phenomena are particularly important in optical telecommunication. In different periods of the 

historical development of the optical telecommunication the different kinds of dispersion played a 

different  role. In the first period, when the multimode fibers  with the step profile of the refraction 

index were used and the light was transmitted  only on small distances at low transimission speed, 

the chromatic dispersion played a negligible role in contrast to  the mode dispersion.  The 

development of the multimode optical fibers with the gradient profile of the refraction index had 

reduced the mode dispersion considerably. Employing the single-mode optical fibers eliminated 

entirely the phenomenon of the mode dispersion and allowed to propagate the signal over large 

distances.  However, with the higher transmission speeds gigabites per second the chromatic 

dispersion became more and more essential on large distances.  The technical  problems related to 

the transmision in the second window, and particularly  in the third transmission window became 

more and more dependent on the chromatic  dispersion.  Fig.3.1 illustrates  the power losses caused 

by the chromatic dispersion on the distance in the III transmision window for the different 

transmission  speeds, when we apply a single-mode laser DFB (distributed feedback Bragg) of 

spectral width of 0.1 nm as a light source to propagate in  a single-mode fiber characterized by the  

dispersion coefficient of 17 ps/nm/km, typical for most glassy fibers.   

 

                                
 

                       Fig.3.1.   Attenuation caused by dispersion at transmission speed a) 0.78 Gb/s, b) 1.33 

Gb/s, c) 3.11 Gb/s for the  optical fiber characterized by the chromatic dispersion of 17 ps/nm/km 

and propagating the light from  the single-mode laser DFB at spectral width of  0.1 nm  

 

Usually, the maximum attenuation caused by dispersion can be tolerated up to the value of 2 dB, 

which means  that at the transmission speed of 3.11 Gb/s we might apply the optical fiber with length 

up to  85 km without any regeneration. We can see that for the transmission speeds higher than 3 

Gb/s dispersion plays  an key role in case of larger  distances and the transmission becomes 

dispersion-limited.  

 Simply speaking, chromatic dispersion means that the different wavelengths travel with 

different velocities even for the single-mode optical fibers. The chromatic dispersion is the 

characteristic feature of  the material and it is imposible to avoid it, it can be only reduced. The 

dependence of the refraction index on the wavelegth  for fused silica is shown in the Figure 3.2. 
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Fig.3.2. Dependence of refraction index and wavelength for fused silica. 

 

The radiation of  shorter wavelengths has larger  refraction indices than that for the longer 

wavelengths, so the light at different wavelengths is traveling with different speeds. The more 

monochromatic light from  the transmitter the larger the velocity difference between the longest and 

the shortest component propagating through the fiber. Every LED diode and a diode laser is 

characterized by a  spectral width. For example, the multimode Fabry Perot (FP) laser has the 

spectral width of 2 nm, a single-mode laser – 0.1 nm, and Bragg laser DFB – 0.05 nm. Obviously, 

the smaller band width of the light source,  the smaller dispersion effects. It indicates that DFB lasers 

results in  the smallest material chromatic dispersion in a fiber. We will discuss in details the 

different light sources including LED diodes, diode lasers such as FP, DFB, DRB.  Now we 

mentioned them because we needed only parameters, such us the spectral width to illustrate the 

problem of material chromatic dispersion. 
 

3.1. Mode dispersion 
 

So far, the discussion has been concerned on a single-mode optical fiber. In a multimode 

optical fiber there is an  additional dispersion - the mode dispersion which occurs even, when the 

light introduced into a fiber is an ideal monochromatic source. Indeed, in a single –mode fiber we 

can assume with a good approximation that the optical path of the rays is directed along the optical 

axis of the fiber Fig.(1.10), because the radius of the core is very small (5-10 m, see Chapter 1). In a 

multi-mode fiber the radius of the core is much larger (50-62.5 m) and the rays can travel along 

different paths (Fig.1.11). In a multimode fiber with a step profile of the refraction index all rays 

travel with the same speed – the rays  traveling along the fiber axis have the same speed as the rays 

traveling close to the core-cladding interface. As they cover the optical paths of different length at 

the same speed they reach the detector at different times. This leads to the temporal pulse broadening 

at the end of the fiber. This type of temporal broadening is called the mode dispersion  
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Fig.3.3. Illustration of temporal pulse broadening in a step fiber as a result of the  mode dispersion 

 

 

 

3.2. Chromatic dispersion 

3.2.1. Waveguide dispersion (optical) 
 

In chapter 1 we introduced the term of the normalized frequency   and  the cut-off frequency 0   
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as well as the effective refraction index 

                                                                            (3.2)    

                                    

                                                             (3.2)   

 

We have shown in chapter 1 that    

  

1) for the frequency which exceeds the cut-off frequency 0  only a small part of the 

electromagnetic field for a given mode propagates in the core. The main part of the optical 

power propagates in a cladding  

0

2
k

nneff


         when   0  ,  (3.3)  

2) as a frequency is growing up, the electromagnetic field of a given mode is contained partly in 

a core and partly in a cladding, 

3) when the frequency grows up considerably above the cut-off frequency, the field of a given 

mode is contained nearly almost in a core 

                 
0

1
k

nneff


           when      .  (3.4) 

 WAVEGUIDE DISPERSION describes the dependence of the effective refraction index  

neff =f() on the normalized frequency of radiation propagating through the optical fiber. The 

waveguide dispersion  results in  distribution changes of a  mode power between the core and 

 effn
k


0


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the cladding.  The waveguide dispersion is an important parameter resulting in the frequency 

dependence of the  group delay 







d

d

g

g 
1

 ,                                                    (3.5) 

because =f() depends on  the normalized frequency.    In the next chapters we will explain 

why the goup delay plays an important role in modern optical fiber communication.                                                                                                               

 

3.2.2. Material dispersion.  Theoretical background: group velocity, group delay, 

dispersion index [1] 

 
So far, in our considerations of waveguide dispersion we have assumed that  there is no 

chromatic dispersion ( )(1 fn   and )(2 fn   where  is the angulat frequency) which 

is of course a very rough approximation. Now we will take into account the chromatic, material 

dispersion of the core and the cladding.  The typical dependence of the refraction index on 

wavelength is nonlinear as it is shown in Fig. 3.2 for the fused silica.  

We will introduce some definitions, which will be needed to provide the theoretical 

description of the material dispersion phenomena, such as the group velocity, the group delay, the 

dispersion index.  

Phase velocity  - defines the velocity of the wave of the constant phase for a given mode  

kn

c 
        for a planar wave,                                            (3.6) 

                                 




                           (3.7) 

for a wave propagating  in a fiber, where    is the propagation constant  

Group velocity   is expressed by a formula 






d

d
g            (3.8) 

Phase velocity is given by formula (3.6) and it describes the velocity of a monochromatic 

plane wave. Let us consider the case, when the wave is non-monochromatic. The wave function (z, 

t) for  a such state is represented by  the wave packet 

     ktkzkAtz

kk
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diexp),(
0

0

  




,       (3.9) 

describing the set of planar waves characterized by the  wave vectors k  from the interval 

kkkkk  00          (3.10) 

and directed along z axis. Developing   k  into power series 

  )kk(
k

k
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and substituting into formula (3.9), one obtains 



 6 

      tzk

t
k

z

kt
k

kAtz
00

0

0

0
iexp

d

d

d

d
-zsin

2, 




 

































 .    (3.12) 

The term  
t

k
z

kt
k

z

kA

0

0

0

d

d

d

d
sin

2


















































 can be treated as a amplitude A of the wave packet (z, t). 

This function is of   
sin x

x
  type, and at t = 0 it takes the form as presented in Fig. 3.4 

    
 

Fig. 3.4. Graph of the function of 
sin x

x
 

 

The amplitude A achieves maximum at z = 0, and z can be considered as a measure of the wave 

packet broadening. Calculating the difference between the first minima  
1

z  and 
2

z  we can show that 

z  is equal to 
k

π2
 .  This means that the more monochromatic wave packet (k  0),  the larger 

spatial broadening (z  , so the wave becomes planar). The expression (3.12) simply states  that 

the central point of the wave packet corresponding to the maximum amplitude propagates in space at 

the velocity g  

0











kd

d
g


 ,          (3.13) 

which is called the group velocity. 

The formula (3.13) describes the set of planar waves freely propagating in the vacuum. In a real 

optical fiber, one should consider a limitation imposed on the propagation by the boundary 

conditions of the fiber as well as the refraction index of the core and the cladding described by so-
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called the effective refraction index, which we have already introduced in chapter 1 and which is 

related to the wave vector of the electromagnetic radiation k0  by the formula  

effn
k


0


          (3.14  ) 

Therefore, in real conditions of light propagation in optical fiber the wave   vector  k0  should  be 

replaced by the propagation constant   in the definition of the group velocity (3.13) and the  

expression for the  group velocity  in a fiber takes a form ( 3.15 ) 

 

                                                           (3.15)       

  

                              

Considering the typical dependence of the refraction index on wavelength (Fig.3.2 ), we can suppose 

that more blue waves (shorter) move slower than the red ones, because they are characterized by a 

larger refraction index (3.6). However, we  should  remember that this statement is simplified, 

because it concerns the phase velocity of an ideally monochromatic planar wave. Very often this 

approximation works quite well and the conclusions  derived from it are correct. However, we will  

show that it is not always true.  

To analyse the question of the group velocity in details  and the group velocity dispersion 

(GVD as well as the technically important parameter - the dispersion coefficient D, we should 

consider the phase () of the wave propagating on the optical path L through a fiber medium 

characterized by the refraction index n().  We have to remember that the light propagating in a 

optical fiber and used for the transmission of  signals in telecommunication or computer networks 

has to be modulated in time. As a result of modulation  a   pulse of a given temporal duration is 

generated. The pulse can be treated as  the wave packet of a given spectral width. The shorter the 

pulse in the time domain, the wider the spectrum in the frequency domain. We can assume that the 

optical pulse is a quasi - monochromatic when the condition 1
0





 is  fulfilled, where    is 

the spectral width of the pulse, and  0   is the central frequency of the spectrum. Because 
115

0 10  s , the quasi – monochromatic approximation is valid for pulses  longer than 0.1 ps. It 

denotes that even for very fast modulations of the order of  Tb/s,  the approximation is fulfilled. 

The electric field intensity  t,rE  directed along polarisation direction x can be expressed as 

      .c.ctiexpt,Ext,  0
2

1
rrE


    (3.16)  

where x


 is a vector in polarisation direction x,  t,E r  is a slowly changing function of time  due to 

time modulation (slow in comparison with  the period of optical modes 0 ). This slowly changing 

function of time  t,E r  describing the temporal shape of the pulse is connected with a spectrum in  

the frequency domain  0 ,E r


 by the Fourier transform 

      dttiexpt,E,E 00   




rr


   (3.17) 

The intensity of  the electric field in the  frequency domain  0 ,E r


 fullfils the Helmholtz 

equation 

 

  02

0

22  EknE


       (3.18) 

where the wave vector 0k  is expressed by formula 

   





d

d
g   
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c
k


0        (3.19) 

and  n  is the refraction index of medium in which the light propagates. For the wave propagating 

in a fiber n()= effn , where effn  is the effective refraction index, which in extreme cases has a value 

of the refraction index of the core n1,  when the normalized frequency   or the refraction 

index of the cladding n2, when  normalized  frequency is close to the  cut-off frequency 0  ). 

The intensity of the electric field in the frequency domain  0 ,E r


 can be expressed  as  

 

       ziexp,zA
~

y,xF,E
~

 00 r ,    (3.20) 

 

where  y,xF  describes the field distribution in the plane perpendicular to z axis,  0 ,zA
~

 

describes the slowly changing electric field along z axis – the direction of propagation of an optical 

signal,    is the  propagation constant corresponding to the  wave vector for the planar  wave in 

vacuum and expressed as  

   



 

n

c
        (3.21) 

After substitution (3.20 ) to Helmholtz equation (3.18) and using the method of variables separation 

we obtain the solution describing the propagation of an optical signal in a fiber. We used this method 

in chapter 1 to obtaining  the electric field distribution for different modes – TE, TM, HE, EH.  

In equation  (3.20) the term  ziexp   describes the changes of phase )(Φ . If the optical signal 

moves on the length of  L, the phase change is 

 

    
L

c

n
Φ
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
        (3.22) 

In equation  (3.22) we used (3.21)  

Because, we do not know the detailed form of )(Φ we expand the phase () in Taylor series 

around the central frequency 0 

 (3.23) 
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The temporal shape of the pulse )(z, tA   is related to the spectral shape  )(z,z 0 A
~

by the  

reverse Fourier transform  

 

                                                                                                                                    (3.24) 





dAtA

t)(Φ 0
-i-)(i

e)e (z,)(z, 




 0
2

1

    
 

Substituting (3.23) to (3.24) it becomes obvious, that the first term 0   doesn’t have any influence on   

the temporal shape of the propagated pulses but only on the phase shift. The second term also does 

not influence the temporal shape of the pulse, it  only generates the time delay of the pulse 

propagating through the medium. Indeed, comparing the first derivative of equation (3.22) with 

definition of the group velocity g  (3.15)  we obtain 
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where effn
k


0


. We can notice that 

d

dΦ
 has a clear physical sense, it is the time tg  needed to 

cover the distance L by  the spectral component moving with the group velocity g .  

The third term  in the expression (3.23)  

 

2
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d

2
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




Φ
     (3.26) 

has influence on  the temporal shape of the pulse. In fact, assuming that  const
d

d


2

2




Φ
 and 

substituting  to (3.24) we obtain  
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


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where the modified temporal pulse duration is  

 

4

0

4

0 1



 c ,        (3.27a) 

where  L
Φ

(c 2)L
d

d



 

2

2

.     (3.27b) 

Derivation of the relation of  (3.25 -3.27) we can find in the work [3] .   

Thus, we have shown that the nonlinear term of dispersion  
2

02

2

)(
d

d

2

1





Φ
 results in the 

temporal pulse broadening. The temporal pulse broadening is a result of different group velocities 

and it is called the GVD effect (Group Velocity Dispersion). 

In some books [2] the equation (3.27 a) has a bit different form: the dispersion length  LD is 

introduced as  

2

2

0  /LD                (3.27c) 

which defines the  length of optical fiber LD and  for which the effects of dispersion related with the 

nonlinearity of the refraction index 2  are important, or they can be neglected. In fact,  substituting 

(3.27 c) and (3.27 b) to (3.27 a) we obtain 

 

    
2

0 1 )
L

L
(

D

        (3.28) 

 

For standard telecommunication fibers in the window 1550 nm km/ps2

2 20  and pulses 

0 >100ps, kmLD 500 . It indicates that for a fiber of length 50-80 km, the effects related to GVD 

dispersion are negligible ( DLL  ). However, for shorter pulses 0  on the order of 1 ps , and for 

the fast modulation, mLD 50  , the GVD effect cannot be neglected for any length of a fiber, 
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because  DLL  . 

 

To summarize, one can see from equation (3.27) that the nonlinear term of dispersion  

2

02

2

)(
d

d

2

1





Φ
 causes the broadening  of the temporal pulse. This term causes that the group 

velocities of different components become different. As a result the different components cover the 

optical path  L in different times, which causes the temporal pulse broadening.   

 In Fig. 3.5 the effect of broadening for the temporal pulse of the Gaussian shape during 

propagation in an optical fiber is shown. 

 

 
 

Fig.3.5. Broadening of the pulse of the  Gaussian  shape during the propagation in an optical fiber ,  

input pulse for z=0,  pulse after covering the path of z=2LD , pulse after covering the path of z=4LD   

[2], where LD  is the dispersion length of a fiber defined by the formula (3.27.c) 

 

Let us assume that the temporal pulse of  the Gaussian shape at z = 0  shows no group 

velocity dispersion (GVD = 0) ( Fig.3.6). After passing the  path  z = 2LD  or   z =  4LD   the pulse 

has still the Gaussian shape, but  it is significantly broadened due to the  GVD effect. The GVD 

effect can be positive or negative.  When  the  components of longer wavelengths moves faster than 

the shorter ones we say that GVD > 0 (Fig.3.7 a). When the  components of longer wavelengths 

move slower  than the shorter waves, we say that  the fiber shows the negative dispersion (GVD < 0) 

(Fig.3.7 b). 
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Fig.3.6. temporal pulse at Gausse shape at zero GVD=0 (ang. zero chirped) 

 

          
 

Fig.3.7. Gaussian shape characterised by the positive GVD  (a) and the negative GVD (b)  

 

No matter what is the  sign of the GVD dispersion, the input pulse which shows zero chirp (Fig.3.6.) 

undergoes the temporal broadening. after moving through the optical fiber. The zero chirp means, 

that all spectral component of temporal pulse move with the same group velocity  

    (3.29)

 

 

 

 

     (3.30) 

 
However, the situation changes when the input pulse just shows negative dispersion  (GVD < 0) 

(Fig. 3.7 b).  Then  the positive GVD effect causes firstly shortening of the pulse up to the moment 

when GVD=0 is reached, and later  its broadening (Fig.3.8 ) 
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L
d

d
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


1
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dΦ
(
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
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Fig.3.8. Broadening of the Gaussian pulse with input chirp characterized by parameter C during 

propagation in optical fiber of positive dispersion GVD > 0, -----  pulse at C = 0, C = 2  - pulse for 

input positive GVD dispersion, C =-2 - pulse for input negative GVD dispersion   [2]. When the 

optical fiber shows dispersion GVD < 0, the same curves describe bands broadening, when we 

exchange signs of C  

 

It is easy to understand  this initial effect of pulse narrowing in Fig. 3.8 for C=-2. The input 

pulse has GVD opposite to GVD of the optical fiber in which it begins to propagate. This means that 

the shorter waves which at entrance moved faster, in the  optical fiber begin to show the effect of 

delay, whereas the longer waves begin  to move faster. It leads to the compensation of GVD effect. 

The pulse achieves the minimum for a such distance in the  optical fiber for which both effects are 

compensated  and the GVD = 0. For this distance the the pulse is the shortest and the most broadened  

in the  frequency domain (transform – limited spectral band width). Further propagation in a fiber 

leads to the pulse broadening as the  the effect of GVD becomes positive.   

One can see from (3.22) that the second order dispersion term 
2

2

d

Φd
 can be  expressed by the 

following formula 

 

L
d

d
L

d

nd

cd

dn

cd

Φd
2

2

2

2

2

2 2










 )( .     (3.31) 

 

If 
2

2

d

Φd
 is different from zero, the group velocities g related  to different frequencies are different 

and therefore we say, that the medium is characterized by the  the group velocity dispersion - GVD. 

The typical values 
2

2

d

d Φ
for wavelength of 800 nm are the following: sapphire crystal -580 fs

2
/cm; 

fused silica - 360 fs
2
/cm, glass SF10 -  1500 fs

2
/cm. 
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To summarize the influence of GVD on the shape and the temporal duration of the modulated 

pulses propagating in the optical fiber we can state  that the GVD effect becomes essential for pulses 

of picosecond time scale or shorter.  Therefore, the nonlinear effects of the refraction index begin to 

play an  important role in fast optical  transmission. Practically, it becomes important when the 

transmission speeds exceeds 100Gb/s.  Fast transmisions requires fast modulation. Fast modulation 

generates pulses in the form of quasi - monochromatic wave packet in a  given spectral range. 

Because the refraction index n() of every material depends on the radiation frequency, every 

frequency component in the pulse propagate with a bit different group velocity g. The wider 

spectral range, the larger differences (dispersion) of the group velocity (GVD).  

So far, we have considered only the influence of the first three terms in Taylor series (3.23). In some 

cases we also have to consider the forth term 3
))(

d

d
03

3

6

1





Φ
( . Including this term  results in 

change of the  Gaussian pulse shape. The pulse is not only broadened, but also the pulse in the fiber 

does  not keep the Gaussian shape any more and depends on the  value of  
3

3

3



d

d Φ
  (Fig. 3.9). 

          
 

Fig.3.9. The shape of the temporal pulse 0.5 ps after passage of the path of  2.5 km in a fiber with the 

dispersion 3 =0.124 (a) and 3 =-0.076 km/ps3  [4] 

 

Introduction of the third order nonlinearity (TOD, third order dispersion) characterized by 3  

permitts to introduce the next important parameter S defined as   

                         233

2

2

42































cc

d

dD
S    (3.23) 

 

In Figure 3.10,  the typical dependence of the refraction index n() versus wavelength  is 

shown. 
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Fig.3.10.  Schematic dependence of the refraction index n() as a function of wavelength .(a), the 

refraction index for fused silica (b)  

 

We should stress that  Fig.3.10. represents only a small range of the dependence on the wavelength 

corresponding to the non-resonance area (where the glass does not absorb). The full range represents 

Fig.3.11. 

 
 

Fig.3.11. The dependence of the absorption coefficient () and the refraction index n() as a 

function of wavelength for fused silica  
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For a given wavelength the refraction index n() defines the phase velocity by the relation 




 

n

c
. The slope of the  curve, 





d

dn )(
, determines the group velocity 

)
d

dn
)(n(

c
g








         (3.33) 

for the wave packet at wavelength . The formula (3.33) for the group velocity can be easily derived 

from definition of the group velocity 





d

d
g   and  the relation 




 

n

c
 

The expression  (3.33) can be written  as  

N

c
g        (3.34)   

where the group refraction index N is introduced 







d

dn
)(n

d

dn
)(nN   (3.35) 

One can be sen from eq. (3.33) that the first derivative 




d

dn )(
 defines the group velocity. When 

const
d

dn




 )(
, 0

2

2


d

nd
 the all the spectral components and  the pulse moves with the 

same group velocity g . This condition means that the dependence of the refraction index on 

wavelength should be linear, which happens in practice very rarely. Thus, the second derivative 

2

2

d

d



n
 which is a measure of nonlinearity for the  refraction index decides about the group velocity 

dispersion (GVD) of material. In another words, using the expression (3.25) we can say that GVD=0 

when the group delay tg is  independent on  frequency, that is tg= 
d

dΦ
 = const. 

Another expression that also describes  the group velocity dispersion GVD is the second 

derivative of propagation constant

 

 

    (3.36) 

 

expressed by equation  

)
2

2

2

2

2 2
1









d

nd

d

dn
(

cd

d
       (3.37)

 
which results from (3.31) 
 

When 02  ,  it is said, that the fiber shows normal (or positive ) GVD, when 02  ,  it 

is said, that the fiber shows abnormal  (or negative) GVD. 

 

In material showing positive GVD effect, the components at longer wavelengths moves faster than 

components at shorter wavelengths, in material showing  the negative GVD effect the situation is the 

0
ωω

 )
d

d
(

2

2

2




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opposite. The larger group velocity dispersion GVD, the larger broadening of the  temporal pulse. It 

is said, that the pulse is modulated positively (positively chirped), when the longer waves travel in 

medium faster than the short ones. 

 

Often, instead of 2 , the group velocity dispersion is describedwith the dispersion coeffcient 

D  defined as 

 
                                               ]

kmnm

ps
[

d

dt
D

g





, gdzie 





 d

d
t

g

g 
1

    (3.38) 

The dispersion coefficient D determines the temporal broadening  of the pulse in ps 

(picoseconds) after passage of  1 km of optical fiber, if the width of the spectral line of ligth 

source is  1 nm 

 
 

We should notice , that the dispersion coefficient D defined above   

d

dt
D

g
            (3.39) 

where 1

1









d

d
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g

g         (3.40) 

             

has the sign opposite to 2 , as 
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
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d

nd

c

c

d

d
D                                 (3.41) 

so 

When 0D   it is said, that the fiber shows the normal (positive) GVD,  

when 0D   it is said, that the fiber shows the anomal (negative) GVD. 

 

The another parameter which characterizes chromatic dispersion is the coefficient  d12  defined as the 

following: 

)()()()(d gg 2

1

1

1

211112      (3.43)   

where 1  and 2  are the central wavelengths of two temporal pulses, 1  is calculated from formula 

obtained from (3.25) 

 

        (3.44)     

 

In Fig. 3.12. the dependence of the parameters characterizing the group velocity dispersion GVD, 2 

and d12, as a function of wavelength for fused silica SiO2 is presented. One can seen from Fig. 3.12 

that in standard optical fibers 2   reaches zero value for wavelength of  1.31 m which denotes that 

GVD dispersion is equal to zero in the second transmission window. In practice we can shift the zero 

dispersion towards longer waves in the third window. It can be achievied by several methods: 

 doping with  e.g. GeO2 or P2O5, 

 modification of  the  effective refraction index effn  of a core through the waveguide 

dispersion. 

Fig.3.12. shows the dependence of d12  on 2 , when 1 =0.532 m for silica glass SiO2 with the  

normal dispersion (when 2 >0), where the longer wavelength components of the the temporal pulse 

moves faster than that of the shorter one. The figure shows that, for example, the pulse 2 =1.064 m 

)(g

g 







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t

d

d
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(for which also 2 >0, as it results from Fig.3.12.) propagating along the same optical path as the 

pulse 1 =0.532 m will preceede it of about 80 ps/m. The parameter, which describes the 

divergence effect caused by the different group velocities is defined as  LW  (walk-off length) 

120 d/LW       (3,45) 

where 0  is a duration time of the pulse. For an example given above, the walk-off length is 25 cm 

for pulse of 20 ps. 

 

 
 

Fig.3.12. Parameters characterizing the group velocity dispersion GVD, 2 and d12 as a 

function of  wavelength for fused silica SiO2  [4] 

 

Fig.3.13. shows the dependence of the dispersion coefficint  D as a function of wavelength for a  

standard single mode fiber [5]. One can see  that  D is equal to zero at about 1.31 m. 

 

 

                
 

Fig.3.13. Dependence of dispersion index D and wavelength for a single mode fiber [5]  
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Using (3.41) and the  dependence of the refraction index on wavelength, one can show that for a 

typical single mode fiber made of fused silica the dispersion coefficient D is expressed with the 

empirical relation 

)(
S

D
3

4

00

4 


        (3.42) 

where 

S0 =0.092 ps/(nm
2
 km), 1311D  nm 

Fig. 3.14 illustrates the dispersion coefficient  D as a function of wavelength in the range 

from 1250 nm to 1650 nm. The zero of GVD occurs  at 1311 nm, in contrast to the III window at 

1550 nm where D is  at about 17 ps/nm/km.  

 

                             
  

Fig.3.14. Dependence of dispersion index D and wavelength for a typical single mode fiber  

[Corning SMF-28, www. Fiberoptic.com  ] 

 

Now we will consider in details the dispersion shifted fibers. After substituting the group 

velocity g (3.33) into the definition  of the dispersion coefficient  

]
kmnm

ps
[

d

dt
D

g





    (3.46) 

We obtain 

      
d

dN

c
D

1
       (3.47) 

So, the dispersion coefficient D=0,  when 0
d

dN
, which happens when  N has an extremum. 

Fig.3.15. shows the dependence of the group refraction index on wavelength for pure silica SiO2. It 

is clear from the figure that the group refraction index has a minimum at 1.31 m  which indicates 

that at this wavelength a fiber shows zero GVD.  
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Fig.3.15. The group refraction index N (a) and the refraction index n (b) as a function of wavelength 

for pure silica SiO2 

 
Therefore, in a standard fiber a zero dispersion occurs in the second  transmission window (1.31 

m).  It would be better if the zero dispersion is accompanied  by a low attenuation. However, the 

attenuation in the second transmission window is higher than in the third window  at 1.55 m. 

 

Therefore, the effort has been concentrated on  inventing such a fiber, in which the dispersion 

minimum (D = 0) overlapps  with the attenuation minimum in the third transmission window. 

 

The fibers, in which it has been successfully done are called the dispersion shifted fibers. They were 

discussed partly in chapter I.  Here we have already a sufficient supply of theoretical knowledge to 

understand the methods of achieving the shift of  dispersion towards the third window. The Figure  

3.16 illustrates the idea of obtaining the dispersion shifted fiber. 

 

                       
 

Fig.3.16. Dependence of material, waveguide and total dispersion on   wavelength 
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The total dispersion of a single mode fiber is the sum of contributions coming from the material 

dispersion and the waveguide dispersion. One can see from Fig. 3.16 that the increase of the negative 

slope of waveguide dispersion shifts the zero of dispersion towards longer wavelengths. Thus,  the 

obvious way of dispersion minimum shifting  to the III window of transmission is enlarging the 

influence of the waveguide dispersion.  It can be done by enlargement of difference between the core 

and the cladding refraction indices. However, we should notice, that by enlarging this difference, we 

also increase the cut-off frequency 2

2

2

1

0

0

2
nn

a





 , what creates the conditions for 

propagating  more than one mode. To remove this undesirable effect we have to reduce the diameter 

of core a (e.g. from 8 m in a standard fiber to 5 m in a dispersion shifted fiber). When GVD is be 

shifted far over  1.6 m, fibers show large positive value of 2 > 0 and they are called dispersion - 

compensating fibers, DCFs.  

 

 
 

Fig.3.17. Dependance of dispersion index D and wavelength in differend kinds of fibers, 

a) standard fiber, b) dispersion shifted fiber, c) flat dispersion fiber 

 

The slope of the dispersion coefficient D ( Fig. 3.17)  depends on nonlinearities of the  third order 

3

3

3





d

d
  ( 3.23 ) (TOD- third order dispersion). The strong dependence of the dispersion effect 

on wavelength creates many problems in WDM (wave division multiplexing)  techniques. Therefore, 

in recent years there have been created fibers with the reduced slope. The most profitable case is a 

flat profile shown in Fig. 3.18.  The low slope can be achieved by using multiple cladding layers. 

Fig.3.18 shows the slope of  D versus wavelength for SC – single clad, DC – double- clad, QC - 

quadruple – clad fibers.  
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Fig.3.18. Dispersion coefficient  D as a function of wavelength for three kinds of fibers, for SC-

single clad, DC –double-clad, QC- quadruple-clad.  

 

Using this technology we can get almost flat profile in the range of 1.3-1.6 m.  

We should stress that the zero  dispersion removes all problems related to GVD, but creates new 

nonlinear phenomena such as four waves mixing (FWM) or cross phase modulation (CMP) which 

can be very disadvantageous for the transmission, particularly for the WDM transmission. In many 

cases the total lack of dispersion generates  cross-talks between the channels  as a result of the 

nonlinear phenomena of four waves mixing.  This phenomenon will be discussed later in this 

chapter. The GVD disperion should be small (typically D1-3 ps / km-nm), but non - zero in the 

whole range of the optical amplifiers  EDFA (1530-1565 nm) reducing the effects of non-linear 

FWM and CMP.  The  single mode fibers with the non - zero shifted dispersion are nowadays the 

best medium for DWDM broadcasting at high speeds in the III the window on large  distances. 

Combining the  low dispersion with the small slope profile helps  to reach  larger frequency range of 

broadcasting without the necessity to compensate the dispersion parameters in nets working with 

velocities of 2.5 - 10Gbit/s. These parameters becomes more and more significant with the optical 

transmission up to 40Gbit /s.  

To summarize,   the modern  optical fibers are characterized by the small dispersion coefficient D  of 

flat profile. Low dispersion both for  the band  C and L (Fig.3.19)  creates many new possibilities 

including   

 long distant transmission without dispersion compensation, 

  high speeds up to 40Gbit/s, 

 Transmission in the  L band.  
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Fig. 3.19. Transmission bands 

Although the present fiber technology is based on positive GVD materials, more and more  

often  fibers showing anomal (or negative) GVD (when 02  ) become in the centre of interest 

related to  the new generation of fibers for  soliton transmission. We will discuss this issue in further 

chapters. 

 

Kinds of dispersion shifted fibers Description 

Dispersion shifted single mode fibers DS- SMF – Dispersion Shifted-Single Mode 

Fiber, recommendation of G.653, gradient 

refraction index, strong negative dispersion in 

II window (below 20 ps/nm*km, zero 

dispersion at 1550 nm in III window, 

applications in TDM single channel long-

distant transmission in III window, less useful 

in multichanneled WDM transmission in III 

window, as the lack of dispersion leads to 

cross-talks as a result of non - linear four 

wave mixing phenomenon  (FWM) 

Non zero dispersion shifted –single 

mode fiber  

NZDS- SMF – Non Zero Dispersion Shifted-

Single Mode Fiber, recommendation of 

G.655, small, but not zero dispersion in whole 

range of transmission of optical amplifiers 

EDFA (1530-1565 nm) reduces the nonlinear 

effects of FWM and a cross phase modulation  

CPM, so far, the best medium for DWDM 

transmission in III window over long 

distances 
ITU-T                  International Telecommunication Union  – Telecommunication Standarization Sector 

 

Fig.3.20 illustrates the different types of dispersion shifted single mode fibers applied in the  III 

optical window at1550 nm. Blue region marks the EDFA window (erbium doped fiber amplifier) and 

it represents the wavelengths used at present in DWDM multiplexing. 
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Fig.3.20  The different types of single mode fibers with shifted dispersion 

  

 for non-dispersion shifted single mode fibers (Non-DSF)  zero GVD occurs at  1310 nm, 

 for single mode dispersion shifted fibers (DSF) zero GVD occurs at  1550 nm, employed in 

single channel TDM ransmission, nonlinear effects cause problems for multichannel DWDM 

broadband transmission, 

 single mode non-zero, dispersion shifted fibers with positive slope of the dispersion coefficint 

D ((+D) NZ-DSF) are similar to DSF,  but zero-dispersion is shifted out of window 1550 nm. 

At 1550 nm a fiber has small, but non-zero GVD, slope of D is positive  

 single mode non-zero, dispersion shifted fibers with negative slope of the dispersion 

coefficient D (-D) NZ-DSF are similar to DSF,  but the zero-dispersion is shifted out of 

window 1550 nm. At 1550 nm fiber has a small, but non-zero GVD, slope of D is negative.  

 

The  optical fibers of type (+D) NZ-DSF) and (-D) NZ-DSF having the opposite GVD are used to 

compensate the  GVD. The sequence of equal distances of fibers (+D) NZ-DSF) and (-D) NZ-DSF  

causes that the total GVD is negligibly small. Such solutions can be employed in multiplexing 

DWDM techniques.  Fig. 3.21 illustrates this method of GVD compensation. 

 

 
 

Fig.3.21. Method of GVD compensation by the sequence of  fibers (+D) NZ-DSF) and  (-D) NZ-

DSF 
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Examples of non-zero dispersion shifted single mode fiber - NZDS- SMF 
 

True Wave (Fig.3.22) 1994, Lucent Technologies, version True 

Wave + as well as True Wave – (alternately 

dispersion) permit to transmit without up to 

1000 km with speed of 2.5 Gb/s or 300 km 

with speed of 10 Gb/s, dispersion D in the 

range 1460-1625nm is from 2 to 

14ps/nm*km), TrueWave® is produced 

according to the  standard of ITU-T G.655 

(NZDF). The fiber of TrueWave RS offers the 

smallest slope of dispersion profile 

All Wave Bell Laboratory (Lucent), transmission in all 

four transmission windows II,III, IV, V. So 

far, transmission in V window has been 

inaccessible  due to high attenuation caused 

by absorption of  OH
-
 ions. It may be used in 

the whole band from 1280 to 1625 nm. A 

fiber has a very low attenuation in water peak 

- at 1383 nm attenuation does not exceed 

0.31dB/km. The fiber is in accordance with  

the newest standard of  ITU-T G.652.D 

LEAF Large Effective Area, 1998, Corning , lower 

noises, it permitts to enlarge a distance 

between EDFA amplifiers up to 100 km 

TERALIGHT 1999, Alcatel, zero dispersion at 1440 nm, 

small positive slope of dispersion in the 

whole range of  EDFA amplifiers, perfect 

fiber to long-distance multichannel broadband 

UWDM transmissions  
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          a) 

 

 

                    b) 

 

Fig.3.22 Comparison of the dispersion properties for the NZDS  fiber and the large area fiber (a), 

residual dispersion for the NZDS fiber 
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3.2.3. Polarization Dispersion 

 
We discussed the phenomena of polarization in optical fibers in chapter 1.   In an ideal optical fiber 

there is no distinguished optical axis, the material of the core and of the cladding are  isotropic, 

which means that a phenomenon of birefringerence does not exist. In real optical fibers the tensions, 

change of thickness, the accidental changes of shape, core diameter cause  an accidental formation of 

distinguished optical axises and local birefringerence. As a consequence,  two ortogonal components 

traveling in a fiber as ordinary and extraordinary ray move in a fiber with different velocities. The 

different velocities of the two ortogonal components generate the phase difference changing in time 

of propagation along a fiber and change of polarization. Beside the change of polarization with time 

of propagation, the different velocities of ordinary ray  (polarization vector is perpendicular to the 

plane of the optical axis) and extraordinary (polarization in the same plane as the optical axis) cause 

that the rays reach the end of a fiber in different time. The changes of polarization are not essential, 

as long as a continuous light in a fiber is propagated (continuous wave, CW) because the majority of 

detectors are not sensitives to polarization state changes. However, in many applications the 

maintenance of a constant polarization is essential, e.g. in optical interferometer, optical lasers, 

sensors, optoelectrical modulators, in coherent transmission as well as in the coupling of integrated 

optical circuits.  The question of dispersion caused by the different velocity of the ordinary and the 

extraordinary ray become particularly important in systems of optical communication at large speeds 

on the order of Gb/s, in which the short pulses travel large distances through the optical fiber. The 

different velocities of the ortogonal rays cause the group velocity dispersion GVD, which results in  

temporal broadening of the pulse. The polarization  mode dispersion (PMD), combined with the 

GVD causes the distortion of CSO image (composite second order) in the amplitude modulated 

video systems, manifesting itself in appearance of a diagonal or circulating lines on TV screen. For 

digital systems at large speeds, the effect of PMD causes the increase of  the bit error rate. 

As it was discussed in chapter 1 describing fibers providing the PM polarization , the measure 

of a birefringerence is a parameter called the mode birefringerence Bm  
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where y  as well as x are the ortogonal mode propagation constants, x

efn and y

efn are effective 

refraction indices along  x and  y direction, k0  is the wave vector. 

The another parameter defining a fiber birefringerence is the beat length 
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where BL  is a path, on which the phase difference of the ortogonal modes increases by
2


. This 

phenomenon  this repeats periodically.  The parameter which  characterizes the phenomenon of 

dispersion caused by polarization PMD is the time delay  T  between the two ortogonal 

components. This parameter is a measure of temporal pulsebroadening on the distance of  L for a 

fiber  characterized by the mode birefringerence Bm and it is expressed by formula 

111 
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 LL
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gygx

      (3.50) 

where 
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)d/dB(k m  01   

However, the parameter T  is not a good parameter to characterize the standard fibers, that are 

unable to keep the constnt polarization, because T is the stochastic variable, and its average 

approaches zero. Therefore, for standard fibers without maintaining polarization the better parameter 

is the root-mean-square, RMS for T  [6]  

]l/L)l/L[exp()l(( ccc

'

T 12 22   2
T)     (3.51) 

where '  is an internal mode dispersion of a fiber,  cl is the length of correlation defined as distance 

on which the correlation keeps between the two ortogonal components of polarization. Typical 

length of correlation is 10
2 

m, that is at L>0.1 km one can assume, that  Llc  ,  

and the formula obtains the form  

LDLl pc

'

T  2         (3.52)  

where pD  is the PMD parameter,  expressed in  km/ps . Typical values of PMD are on the order 

of 0.1-1 km/ps  

 

 

SUMMARY 

 
There are the following  kinds of dispersion: 

 

1. Chromatic dispersion 

 Waveguide dispersion – the effective refraction index depends on the normalized 

frequency 

 Material dispersion - light ray is not monochromatic and the  different wavelength 

components propagate through a fiber with different velocities. The temporal pulse 

broadening is due to the non - zero second derivative of the refraction index  

 Polarisation dispersion - the tensions, change of thickness, the accidental 

changes of shape, core diameter cause  an accidental formation of distinguished 

optical axises and local birefringerence. As a consequence,  two ortogonal 

components traveling in a fiber as ordinary and extraordinary ray move in a fiber 

with different velocities. The different velocities of the two ortogonal components 

generate the phase difference changing in time of propagation along a fiber and 

change of polarization. Beside the change of polarization with time of propagation, 

the different velocities of ordinary ray  and extraordinary  cause that the rays reach 

the end of a fiber in different time. 

2. Mode dispersion – in a multimode fiber with a step profile of the refraction index all 

rays travel with the same speed – the rays  traveling along the fiber axis have the same speed 

as the rays traveling close to the core-cladding interface. As they cover the optical paths of 

different length at the same speed they reach the detector at different times. This leads to the 

temporal pulse broadening at the end of the fiber. This type of temporal broadening is called 

the mode dispersion  

  

Parameters characterizing chromatic dispersion: 
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when 02    it is said, that the fiber shows normal (or positive ) GVD,  

when 02    it is said, that the fiber shows anomal  (or negative ) GVD 

Often, instead of   2 , to express the group velocity dispersion we use the dispersion 

coefficient D  defined as  
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The dispersion coefficient D determines the temporal pulse broadening in ps (picoseconds) 

after passage of 1 km of a fiber, if the width of spectral line of light source is 1 nm. D has the 

opposite sign as 2 , because 
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The other parameter which characterizes the chromatic dispersion is the coefficient d12  

defined as 

                                       )()()()(d gg 2

1

1

1
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The parameter which describes this effect of divergence caused by different propagation 

velocities is LW  (walk-off length) 

      120 d/LW   

The important parameter which characterizes the slope of dispersion coefficient D is 
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