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OverviewFirst Lecture:

Foundations of Ultrashort Pulse Compression

- Description of short laser pulses (duration, chirp, spectrum) 

- Group Delay Dispersion and its compensation

- Gain, loss, and nonlinear optical effects (SPM and SAM)

- Soliton and solitonlike pulse shaping

Second lecture:

Practical methods for ultrafast pulse compression

- Laser oscillators

- Amplification of short pulses, CPA

- Active pulse compression (fiber-grating, hollow fiber, filament)



Piling up photons in as small a volume as possible

Light

source

Lens„Experiment“

What is the maximum excitation 

density we can get?

Sun solar constant  1000 W/m2

Lens area, maybe 0.1m2

Assuming 10 µm spot size: 1 W/µm2

But we are only focusing in two dimensions…



The lambda cube

One cycle

= l/c

l

l

Solar focus (uncompressed):

10000 photons/l3

Amplified compressed laser pulse

1 mJ, focused to 1 µm

1016 photons/l3   !!

Focusing along z means temporal compression !!



G. Mourou et al.

Rev.Mod.Phys. 78, 309 (2006).

Nobody‘s ever been there…

This is as far as I will take you…



A light wave has intensity and 

phase vs. time.

 0( ) Re ( ) exp{ [ ( )]}E t I t i t t  

Neglecting the spatial dependence for 

now, the pulse electric field is given by:

Intensity
PhaseCarrier

frequency

( )I t

Slowly-varying envelope approximation, can be used down to about two 

optical cycles with some care.



The temporal phase, (t), contains frequency-vs.-time information.

The pulse instantaneous angular frequency, inst(t), is defined as:

The Chirp       (Instantaneous frequency)

0( )inst

d
t

dt


  

This pulse increases its frequency linearly in time (from red to blue).

In analogy to bird sounds, this pulse is called a "chirped" pulse.
This pulse is positively chirped, i.e., red leading blue, as from material
dispersion ! 

Time

positivenegative

propagation

0



The Chirped Pulse

(continued)

We can write a linearly chirped Gaussian pulse mathematically as:

ChirpGaussian

amplitude 

Carrier

wave

 2 2

0 0( ) Re exp ( / ) expGE t E t i t t         

Note that for  > 0, when t < 0, the two terms partially cancel, 

so the phase changes slowly with time (so the frequency is low).

And when t > 0, the terms add, and the phase changes more rapidly

(so the frequency is larger)



The Negatively Chirped Pulse

We have been considering a pulse whose frequency increases

linearly with time: a positively chirped pulse.

One can also have a negatively

chirped (Gaussian) pulse, whose 

instantaneous frequency 

decreases with time.  

We simply allow  to be negative

in the expression for the pulse:

And the instantaneous frequency will decrease with time:

   
2 2

0 0( ) Re exp / expGE t E t i t t       
  
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propagation



Nonlinearly Chirped Pulses

The frequency of a light wave can also vary nonlinearly with time. 

This is the electric field of a
Gaussian pulse whose 
frequency varies quadratically 
with time:

This light wave has the expression:

Arbitrarily complex frequency-vs.-time behavior is possible.
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The Fourier Transform

of a Chirped Pulse

Writing a linearly chirped Gaussian pulse as:

or:

Fourier-Transforming yields:

Rationalizing the denominator and separating the real and imag parts:

A Gaussian with

a complex width!

A chirped Gaussian pulse

Fourier-Transforms to itself!!!
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The chirped Gaussian
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Increasing  at constant : Increasing the chirp at constant

pulse duration

 Wider spectrum with increasing parabolic phase

Linear chirp yields parabolic phase  

(  Group Velocity Dispersion, GVD)

Sign of curvature of phase corresponds to sign of chirp

positive chirp = normal GVD

negative chirp = anomalous GVD 

 2 2

0 0( ) exp expE t E t i t t          FT



=5fs=10fs=20fs=40fs

Spectrogram



t

Heisenberg‘s 

uncertainty 

relationship 

b/t D and :

short pulse requires 

broad spectrum

but:

broad spectrum 

does not 

automatically yield

short pulse...



D


DD  2p



Chirped pulses in the spectrogram



D


 different Fourier 

components experience  

different group delay

Temporal smearing of the 

pulse

Despite spectral width  

no short pulse

„not  

bandwidth limited“

D D  2p>



t



Group Delay vs. Frequency   GD()

The frequency-domain quantity that is analogous to the

instantaneous frequency vs. t is the "group delay" vs. .

If the wave in the frequency domain is:

then the group delay is the derivative of the spectral 
phase:

 ( ) ( ) exp ( )E S i    

( ) /g d d   



The Group Delay vs.  for a Chirped Pulse

The group delay of a wave is the derivative of the spectral phase:

For a linearly chirped Gaussian pulse, the spectral phase is:

So:

And the delay vs. frequency is also linear.

When the pulse is long (  0), then:

which is just the inverse of the instantaneous frequency vs. time. 
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Chirp vs. Spectral phase curvature

 An unchirped pulse exhibits a flat spectral phase

 Spectral phase slope is unimportant 
(const. group delay) for the pulse shape

 Positively chirped pulses (red leading blue)
exhibit positive (or normal) phase curvature
or Group Delay Dispersion (GDD)

 Negatively chirped pulses (red trailing blue)
exhibit negative (or anomalous) phase curvature

 The unchirped pulse is the shortest pulse possible
for a given spectrum (rms def., not FWHM !)



Spectral-Phase Taylor Series

It’s common practice to expand the spectral phase in a Taylor Series:

2

0 1 0 2 0( ) [ ] [ ] / 2! ...             

What do these terms mean?

0:  Absolute phase

1:  Group Delay

2:  Group velocity dispersion (linear chirp)

3:  Third-order dispersion

1 1( ) ( ) exp(i )E t E    

E(t ) exp(i0 )
˜ E () exp(i0 )

Fourier Shift Theorem

Leading Order Term to

cause pulse broadening



Propagation through dispersive materials

E0() exp(i t) n() E0() exp(i t) exp(i  z)

z

  n /c  0  1 0  2 0
2/2   3 0

3/6  ...

1=ng/c=(n+ dn/d)/c = 1/vg Group delay, inverse group velocity

units:  fs/mm

2= (2 dn/d d2n/d2)/c Group velocity dispersion

units: fs2/mm



GDD / GVD

Group Delay Dispersion,  units [fs2]

More correctly: [ fs/(Prad/s) ], i.e. delay over ang. freq.

describes how much a particular Fourier component

appears to be delayed vs. another one at distance D

GDD is property of the pulse,

not the material !

GVD, units [fs2/mm] is 

specific property of an

optical material



t

D

D

GDD=D/D



Pulse broadening due to propagation

z cm glass

0
(z)

I(t)=exp(-t2/0
2) tFWHM=1.665 0

(z)=0 [1+(z/LD)2]1/2

LD=0
2/2

Rule of thumb:

|N2 fs2| become important

for a pulse with N fs duration



The dispersion length
L

D
(m

)

Pulse duration (fs)



Types of dispersion

material dispersion 

(origin: atomic and vibrational resonances)

geometric dispersion

(origin: angular dispersion)

interferometric dispersion

(resonances due to 

cavity/multi pass 

interferometer)

chirped mirrors

(photonic structure, 

designed to provide

particular dispersion)



gechirpte PulseOrigin of material dispersion

 UV- and IR-Resonances

cause characteristic      

„phase“ of an optical  

medium

 Resonances „store“ 

energy, causing a 

group delay 

close to resonance 

 Below ~1000nm, only 

positive slope of GD()

positive dispersion

Reviews: G.Steinmeyer, J. Opt. A 5, R1 (2003)

I.A. Walmsley, Rev. Sci. Instrum. 72, 1 (2001)

positive

dispersion

negative

disp.



Resulting GDD



Types of dispersion

material dispersion 

(origin: atomic and vibrational resonances)

geometric dispersion

(origin: angular dispersion)

interferometric dispersion

(resonances due to 

cavity/multi pass 

interferometer)

chirped mirrors

(photonic structure, 

designed to provide

particular dispersion)



dispersion compensation

Refs.: 

E.B.Treacy, IEEE JQE 5, 454 (1969)

Fork et al., Opt. Lett. 9, 150 (1984)

To generate the shortest pulse, 

one needs to compensate 

material dispersion effects

Traditional way:

prism and grating assemblies



Geometric dispersion – the prism compressor

Refs.:  Fork et al., Opt. Lett. 9, 150 (1984)

Sherriff, JOSA B 15, 1224 (1998)

Positions of equal

optical path length

describe circle with

center at prism tip

Second prism only 

parallelize beam paths

No effect on dispersion 

to leading order





qin ql

The prism compressor

horizon

d



The prism compressor

• angular dispersion is converted into GDD

• cosine term dominant for small 

• geometric GDD always negative

• has to be adjusted for material path through prism 1



The prism compressor

l(nm)

GDD(fs2)

no material insertion

5 mm mat.path added

each step

Silica Brewster prisms

d=1m, single pass, horizon 600 nm

A 1m prism compressor can compensate 5cm of mat. disp.

negative 

TOD 

(dGDD/d)



The grating compressor

Ref.: E.B.Treacy, IEEE JQE 5, 454 (1969)

d



L : grating period



The grating compressor

GDD(ps2)
l(nm)

positive 

TOD 

(dGDD/d)

2000 gr./mm 1000 gr./mm

normal incidence, diffraction into 1st negative order, d=1m



Prism vs. Grating compressor

Prism Grating

1000 fs2 ps2

Near lossless Loss=15-50%

Negative TOD Positive TOD

Only negative geometric dispersion

Translates angular dispersion into GDD



Types of dispersion

material dispersion 

(origin: atomic and vibrational resonances)

geometric dispersion

(origin: angular dispersion)

interferometric dispersion

(resonances due to 

cavity/multi pass 

interferometer)

chirped mirrors

(photonic structure, 

designed to provide

particular dispersion)



The GTI

Gires-Tournois 

Interferometer

Partial

Reflector

High

Reflector

r2=5%, e.g.



The GTI

GTI has constant 100% reflectivity but periodic

phase, group delay, and GDD

Period: Dn=c/2nL  (just like a Fabry-Perot)



The GTI

Small values of r: GTI has sinusoidal shape

Large values of r: Dispersion develops into a

third-order pole

G
D

D
 (

fs
2
)

l (nm)

R=0.1%
R=1%

R=50%



Types of dispersion

material dispersion 

(origin: atomic and vibrational resonances)

geometric dispersion

(origin: angular dispersion)

interferometric dispersion

(resonances due to 

cavity/multi pass 

interferometer)

chirped mirrors

(photonic structure, 

designed to provide

particular dispersion)



Chirped mirrors

40

20

0G
ro

u
p

 D
e

la
y
 (

fs
)

1000800600

Wavelength (nm)

l1l2l3l4

 arbitrary monotonous GD

can be compensated

 Compensation of arbitrary 

material dispersion

lBragg

R. Szipöcs et al., Opt. Lett. 19, 201 (1994)

)()()( 

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Chirped Mirrors

penetration depth
0 µm 7 µm

500 nm 

W
a
v
e
le

n
g
th

1000 nm 

Double-Chirped Mirror

ETH Zürich (1/99)

high transmission

negative dispersion,

high reflectance

Ref.: G.Steinmeyer, Science 286, 1507 (1999)



Dispersion oscillations

Gires-Tournois 

Interferometer

Partial

Reflector

High

Reflector

R=5%

60

40

20

0G
ro

u
p

 D
e

la
y
 (

fs
)

900800700

Wavelength (nm)

desired

GTI• Front face + highly reflecting 

mirror form GTI

• Dispersion oscillations

• Magnitude comparable with 

desired disp. 

Ref.: Gires et Tournois, 

C.R. Acad. Sc. Paris, 258, 6112 (1964)



Disp.oscillations destroy pulse contrast

Simulation 

Decay of a 5-fs pulse 

after several bounces

off chirped mirrors 
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a
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pulse energy diffuses into 

temporal continuum

Ref.: G. Steinmeyer, IEEE J. QE. 39, 1027 (2003)



Fight ripple of Bragg gratings: Apodization

n

z

apodize Bragg grating to remove

impedance discontinuities !

Ref.: J.Albert et al., Electron. Lett. 31 (1995)



A remedy: double-chirped mirrors

 Chirping the duty cycle b/t high and low index materials for adiabatic

matching inside the stack

nequiv nLo
match

 AR layer for impedance matching to air
nLo nambient1

match

Kärtner et al., Opt. Lett. 22, 831 (1997)

Matuschek et al., IEEE J. Sel. Top. Quantum Electron. 4, 197 (1998)

2



Limits of double chirped mirrors

It‘s simply impossible to design an AR 

coating with arbitrarily small reflectivity 

and arbitrarily large bandwidth !

1

10

100

G
D

 o
s
c
ill

a
ti
o

n
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m
p

l.
 (

fs
)

10
-4

10
-3

10
-2

10
-1

Residual reflectivity

400nm AR

250nm 

No AR coating

AR

J.A. Dobrowolski et al., Appl. Opt. 35, 644 (1996)



Summary dispersion
Dispersion control is of utmost importance for 
obtaining the shortest possible pulse for a given 
spectrum

Material dispersion can often only be compensated
by „engineered“ dispersion such as
- resulting from angularly dispersive assemblies
- interferometers
- chirped mirrors

Dispersion control over a wide bandwidth becomes
exponentially more challenging as higher orders
start to play an increasing role



Some words about laser gain

 Saturation fluence and cross section

(most important parameter to model gain)

 Frantz-Nodvik equation

 Saturation fluence in absorbers



Elementary light matter interaction

Absorption

spontaneous Emission

stimulated Emission

Considering Abs. and stimulated emission in the following



saturation fluence - microscopic picture 

atomic absorbers, 

cross section =

equivalent area

photons, 

fluence in µJ/cm2

Saturation fluence if on the average, one photon impinges on every atom 

s=Ephoton/Fsat



Macroscopic picture for absorber

stimulated Emission

Dynamical gain saturation



Frantz Nodvik equation

L. M. Frantz and J. S. Nodvik, J. Appl. Phys., 34, pp. 2346-2349, 1963.




















 0exp1exp1ln g

F

F
FF

sat

in
satout













sat

pump

F

F
g exp0

small-signal gain:



tr
a

n
s
m

is
s
io

n

log (fluence)

macroscopic picture for absorber

saturated transmission Tsat

unsaturated transmission T0

modulation depth

100%

0

nonsaturable absorption

saturation fluence Fsatabsorber



Nonlinear optical effects

 All known nonlinear optical effects (SHG etc.) also 

play a role in ultrafast optics

 Two classes of special importance

- nonlinear absorber (clean pulses, provide 

higher transmission for high peak powers)

- instanteneous effects (fs response time)

 Both effects impossible at the same time!

 But: we have instantaneous phase nonlinearities

 And: we can translate phase nonlinearities into 

amplitude nonlinearities



Time delay

Density of States D

Density of States D

Conduction band

Valence band

Valence band

Conduction band

Interband

recombination (ps – ns)

Intraband

thermalization

(fs)

T
ra

n
s
m

is
s
io

n

Saturable absorption (in a SESAM)

Mid-gap 

traps

(defects)

0



Real saturable absorption

Relies on band-filling effects

Relaxation not instantaneous

Acceleration possible (but side effects may occur)

Are there ways to build „artificial“ absorbers that 

are arbitrarily fast?

Solution: exploit phase nonlinearity

(reactive nonlinearities)



Self-phase modulation (I)

1

2

3

4=Si

(3)

THG etc.

1

2
3

4=1 

+2 –3

(3)

4WM



 



(3)

SPM

SPM is the totally degenerate case of 4WM

Three photons/waves at freq.  combined convert into one 

new photon/wave at the same freq.

This photon/wave is phase-shifted.

Eout=(3) E2 E*=[(3) I] E

Phase shift prop. to input intensity.



Self-phase modulation (II)

nonlinear phase prop. to intensity:

Carrier freq. proportional to derivative:

Linear chirp in the center 

of the pulse



Types of self-phase modulation 
Types of self-phase modulation:

1. electronic polarization type

(non-resonant, bound electrons, quasi instantaneous)

positive in dielectrica, values on the order of a few 10-20 m2/W

The Stolen „constant“: n2=3.2 10-20 m2/W for silica
Ref.: Stolen & Lin, Phys. Rev. A 17, 1448 (1978).

response time  inverse band gap (i.e., 1 fs for dielectrica)

same effect negative in semiconductors, n2=-10-16... -10-18 m2/W

(careful: TPA at the same time, free electrons be generated)



Electronic Kerr effect

Ref.: Sheik-Bahae et al., IEEE JQE 27, 1296 (1991)

Silica, 0.2x bandgap

roll over at 0.7x bandgap

negative above 0.7x bandgap



The electronic Kerr effect

Ref.: Sheik-Bahae et al., 

IEEE JQE 27, 1296 (1991)
Silica: +3.2x10-20 m2/W

AlGaAs: -4x10-16 m2/W



Drude-type contributions

Refractive index decreases with increasing electron density
wavelength (nm)

re
fr
.i
n
d
e
x
 c

h
a
n
g
e

ne=3x1022 m-3

effect opposite to Kerr effect in dielectrica

fast excitation, but slow relaxation (ps-ns)



Other types of self-phase modulation

1. electronic polarization type                  10-20 m2/W, 1 fs

2. resonant, molecular orientation, e.g., CS2

10-18 m2/W, 1 ps

3. Resonant atomic absorption, e.g. Na

10-14 m2/W, 100 ps

Interesting, yet useless for ultrafast...



pulse compression - active spectral broadening

Refractive index depends on intensity:

n(I)=n+n2I

Self-phase modulation

Self focussing due to

transverse beam profile



Spectral broadening via SPM

Index increases with intensity

Pulse center is retarded

Compression of cycles in the trailing part  blue shift

Expansion in the leading part  red shift

Newly generated spectral content !

Negative dispersion required for obtaining the shortest pulse



SPM in the spectrogram picture



t

Positive chirp

due to SPM !!

Negative dispersion

required for maximum

temporal localization 

of pulse energy 

Can only be provided by

material disp. at l>1.3µm

Localization will never

be perfect, pedestal

formation



(active) Pulse compression

Combining SPM with dispersion compensation 

yields a shorter pulse

Ref.: C.V.Shank et al., Appl.Phys.Lett. 40, 761 (1982)



SPM + GVD provided in discrete steps

energy in pedestals will effectively

be lost...



Pedestal-free balance b/t GVD and SPM

Solitons

Nonlinear Schrödinger Equation

Some solutions are of the form

A(t)=A0 sech(t/t0)

Balance of dispersive phase effects and self-phase modulation

Ref.: Zakharov & Shabat, 

Sov. Phys. JETP 34, 62 (1972)

:=n2 0/c Aeff



Solitons
``I was observing the motion of a boat which was rapidly

drawn along a narrow channel by a pair of horses, when

the boat suddenly stopped - not so the mass of water in

the channel which it had put in motion; it accumulated

round the prow of the vessel in a state of violent agitation,

then suddenly leaving it behind, rolled forward with great

velocity, assuming the form of a large solitary elevation,

a rounded, smooth and well-defined heap of water, which

continued its course along the channel apparently without

change of form or diminution of speed. I followed it on

horseback, and overtook it still rolling on at a rate of some

eight or nine miles an hour, preserving its original figure

some thirty feet long and a foot to a foot and a half in

height. Its height gradually diminished, and after a

chase of one or two miles I lost it in the windings of the

channel. Such, in the month of August 1834, was my

first chance interview with that singular and beautiful

phenomenon which I have called the Wave of

Translation''.

John Scott Russell, "Report on Waves" (Report of the 14th

meeting of the British Association for the Advancement of

Science, York, September 1844 (London 1845), pp 311-390,

Plates XLVII-LVII).

Strait of Gibraltar

as seen from Space Shuttle

Union Canal, Heriot-Watt University, 1995



A intuitive picture for solitons 

Group delay effects due to 

dispersion and nonlinearity 

cancel each other.

Stable shape despite  

dispersive medium

Negative dispersion +

Sign of SPM as in dielectrics

(retarding Kerr)

picture Ref. Linn F. Mollenauer



Higher-order solitons

Fundamental soliton (sech) propagates without changing

its shape.

Higher-order solutions exist, display breathing behavior

Can be employed for pulse compression



Translating SPM into SAM

Interferometer – APM (additive-pulse mode-locking))

phase

Transmission

Positive phase shift increases transmission

Ref.: Ippen et al., JOSA B 6, 1736 (1989)

NOLM: Doran & Wood, Opt. Lett. 13, 56 (1988)

Coupled

cavities



Translating SPM into SAM    (II)

Kerr – lensing mechanism

How the KLM laser really works: V. Magni et al., JOSA B 12 476 (1995).



The main building blocks of ultrafast optics

1. Group Delay Dispersion GDD

2. Self-phase modulation SPM

3. Saturable absorption SAM

(or self-amplitude modulation)

4. Laser gain, dynamic gain saturation 


