Generation of high-energy, few-cycle optical pulses PART II : Methods for generation

> Günter Steinmeyer Max-Born-Institut, Berlin, Germany steinmey@mbi-berlin.de

MARIE CURIE CHAIR AND ESF SUMMER SCHOOL 2009

Rhodes, Greece, September 29, 2009

Max-Born-Institute

Verview **First Lecture:** Foundations of Ultrashort Pulse Compression - Description of short laser pulses (duration, chirp, spectrum) - Group Delay Dispersion and its compensation - Nonlinear optical effects (SPM and SAM) - Soliton and solitonlike pulse shaping Second lecture: Practical methods for ultrafast pulse compression Laser oscillators - Amplification of short pulses, CPA - Active pulse compression (fiber-grating, hollow fiber, filament)

The main building blocks of ultrafast optics

- 1. Group Delay Dispersion GDD
- 2. Self-phase modulation SPM
- 3. Saturable absorption SAM (or self-amplitude modulation)
- 4. Laser gain, dynamical gain saturation

The three basic schemes

1. Oscillator

2. Amplification

3. Compression

Femtosecond Oscillators

- SAM vs. gain saturation mode-locking stability
- The "mode-locking force"
- Fast and slow saturable absorbers
- Soliton mode-locking
- Net gain window
- Shortest pulse durations

Mode-locking

Intracavity optical switch opens and closes synchronously with the propagating optical pulse

mode-locked time behavior:

ring laser cavity:

standing-wave cavity:

mode-locked frequency behavior:

Ref: A.E. Siegman, *Lasers*, University Science Books, 1986

Understanding Mode-Locking

Passive vs. active mode-locking

 $\Delta R = 4.9\%$

250

Active mode-locking:

 $F_{\rm sat} = 18 \ \mu \text{J/cm}^2$

50

100

100

R_{ns} 95⊦

 $R_0 R_{\rm ns}$

90

0

Reflectivity (%)

Drive modulator with rf wave; generated sidebands coinciding with optical cavity modes

$\Delta R_{ns} = 3.7\%$ **Passive mode-locking:**

Use nonlinear transmission characteristics of a saturable absorber. Pulse modulates its own transmision

Incident pulse fluence F_p (μ J/cm²)

150

200

SESAM

Virtual vs. real transition nonlinearity

Gain saturation

Gain saturation normally renders pulsed operation less favorable than cw operation:

Krausz, Brabec, Spielmann, Opt. Lett. 16, 235 (1991).

Net Gain Window (active mode-locking)

Net Gain Window (fast absorber)

H. A. Haus, J. Appl. Phys. 46, 3049 (1975).

Net Gain Window (slow absorber)

H.A. Haus, IEEE J. Quantum Electron. QE-11, 736 (1975)

Net Gain Window (slow absorber II)

H.A. Haus, IEEE J. Quantum Electron. QE-11, 736 (1975)

Soliton mode-locking

Idea: arrange cavity such that fundamental soliton can propagate (balance of SPM and dispersion)

Everything not belonging to the soliton will be eventually stripped off into "continuum" outside the net gain window

Pulses more than 10x shorter than absorber response

The most successful mode-locking method to date !!!

F. X. Kärtner et al., "IEEE J. STQE. 2, 540 (1996)

Mode-locking force

- Mode-locking force = pulse shortening / roundtrip
- Balance with gain bandwidth / dispersive broadening
 - fast absorbers for shortest pulses, slow absorbers for reliable start-up

Ref.: E.P.Ippen, Appl. Phys. **<u>B 58</u>**, 159 (1994)

Initiating and sustaining mode-locking

• But: it may prove useful to add a slow effect to get mode-locking started.

(combine fast absorber with active mode-locking or SESAM...)

Net gain window conclusions

For mode-locking you need to constrict your net gain window to the minimum duration possible!

If this does not work sufficiently, your laser will fall back into cw-operation (cw-spike), double pulse etc.

Ideally you want the fastest possible absorber.

However, even slow absorbers may work if you manage to find something that stabilizes your trailing wing.

A more extensive view

Dependence on SPM

An ultrashort-pulse Ti:sapphire laser

Ref.: D.H. Sutter et al., Opt. Lett. 24, 631 (1999)

Haus et al., "Structures for additive pulse modelocking," *JOSA* B <u>8</u>, 2068 (1991) Brabec et al., "Mode-locking in solitary lasers," *Opt. Lett.* <u>16</u> 1961 (1991)

Q-switched mode-locking

Certain lasers tend to emit bursts of short pulses rather than a continuous train...

Specific problem of rare-earth doped solid-state lasers.

Ref.: C. Hönninger et al., JOSA B 16, 46 (1999).

Conclusions

SAM is important to provide mode-locking stability (prevent fallback into cw operation, q-switching)

Fast absorbers provide poor start-up.

Slow absorbers may require extra tricks to provide short pulses.

For optimum exploitation of gain bandwidth, you need to exploit (soliton-like) compression in every cavity roundtrip (negative β_2)

Kerr-lens mode-locking is, in fact, soliton mode-locking!

World records

2-cycle laser pulses directly from oscillator

R.Ell et al., Opt.Lett. 26, 373 (2001)

Refs.: G.Steinmeyer, Science 286, 1507 (1999); D.H. Sutter, Opt. Lett. 24, 631 (1999)

The mode comb

Siegman's picture of the laser

Cavity eigenfrequencies:

$$v_m = m \frac{c}{2L}$$

Modulator creates sidebands at neigboring modes

Ref: A.E. Siegman, *Lasers*, University Science Books, 1986

The real world

The cavity contains dispersive material

Π

L is now a function of λ !

Cavity eigenfrequencies no more equidistant !

If the modulations fits on one end of the spectrum it does not at the other ...

How can we solve this dilemma ?

Carrier Envelope Offset (CEO)

Ref.: H.R. Telle et al., Appl. Phys. B 69, 327 (1999)

Carrier-Envelope Offset (CEO)

mode-locked laser = optical frequency ruler

- mode comb uniformity better than 10⁻¹⁵
- otherwise rep-rate would be function of wavelength
- 2 degrees of freedom: "translation" and "breathing"

Ref: T.Udem et al., Opt. Lett. 24, 881 (1999)

Comb parameters vs. Intracavity disp.

- 1. Frequency spacing of the comb determined by the group delay of the cavity
- 2. Zero-offset (CEO) of the comb determined by group-phase offset
- 3. All higher-order effects lead pedestal formation in pulse shaping (to be counteracted by SAM)

Comb frequencies ≠ Cavity eigenfrequencies

Summary oscillators

- For the generation of few-cycle pulses, a fast absorber together with soliton-like pulse shaping is required!
- SAM acts to prevent fall-back into continuum SPM fights bandwidth reduction of the gain medium
- Real absorbers are often not fast enough
- Artificial absorbers translate phase nonlinearities into amplitude nonlinearities
- On the shortest time scales, the CE phase starts to matter

Chirped pulse amplification

Amplification of Laser Pulses

This way, you easily fry the crystal...

Why is damage occuring ?

by plasma formation

The B integral

 $B = \frac{2\pi}{\lambda} \int n_2 I(z) dz$

should be smaller than $\approx 2\pi$ to avoid catastrophic self-focusing

This becomes limiting when exceeding pulse energies of 1 µJ with sub-100 fs pulse duration !

Two possible solutions: Scale up diameter or increase pulse duration

Chirped pulse amplification

Strickland & Mourou, Opt. Commun. 56, 219 (1985)

Stretcher - compressor

Compressor

CPA performance and limitations

Stretching from 100fs to about 1ns (10000x) Peak powers of several 100 TW possible Pulse energies of several Joules Focusing >10²⁰ W/cm²

Bottleneck: Grating size

The pre-amp (front end) of a PW laser

This is only the preamplifier...

Perry et al., OL 24 160 (1999); 660J, 450fs, >7x10²⁰ W/cm²

The power amplifier

You will need this to get some real power out...

Perry et al., OL 24 160 (1999); 660J, 450fs, >7x10²⁰ W/cm²

Compressor chamber of PW laser

The compressor chamber looks like a small submarine...

Conclusions

- CPA indispensable for generating short energetic pulses
- Dispersion management with stretcher / compressor arrangements
- B-integral needs to be smaller than a few π
- Intensities of 10²⁰ W/cm² have been demonstrated, exceeding inner-atomic binding forces by orders of magnitude

Compression techniques

Traditional fiber – grating compressor

hollow waveguide filled with noble gas (neon, argon, krypton)

Ref.: M. Nisoli et al., Opt. Lett. 22, 522 (1997)

The hollow fiber compressor

Noble gases are most indestructible medium He: ionization energy 21.4 eV

Nonlinearity adapted to high peak powers of CPA laser systems (several GW)

Focused field strength can exceed binding forces for any given atom!

Hollow geometry provides quasi-guiding and confines the beam to a small interaction volume

Avoid ionization of gas, no other nonlinearities, simple dispersion

Wave equation:

MB

$$\nabla^2 E - \frac{\varepsilon}{c^2} \frac{\partial^2 E}{\partial t^2} = 0$$

Solutions are of the form

$$E_{l,\nu}(\vec{r},t) = \operatorname{Re}\left\{\frac{\exp[i(\omega t - \beta z)]}{2} \times \left[\widetilde{E}_{l,\nu}(r)\exp(i\nu\vartheta) + \widetilde{E}_{l,-\nu}(r)\exp(-i\nu\vartheta)\right]\right\}$$

β=propagation constant ν,m=integer, specifying mode I={r,z,θ}

n(ω)

Ref.: S. de Silvestri et al., "Few-cycle-pulses by external compression" in: Few-Cycle Laser Pulse Generation and its application, F.X.Kärtner ed.

a

n_{core}

Fig. 5. EH₁₁ mode profile calculated for capillary inner radius $a = 2 \,\mu\text{m}$. In calculations, it was assumed that $n_{\text{core}} = 1$, $n_{\text{clad}} = 1.45$

Fig. 6. EH₁₁ mode profile calculated for a capillary inner radius $a = 150 \,\mu$ the calculations, it was assumed that $n_{\rm core} = 1$, $n_{\rm clad} = 1.45$

Fig. 2. Difference between the real part of the propagation constant β of the EH₁₁ mode and the free propagation constant $2\pi/\lambda$ as a function of frequency for $a = 2 \,\mu\text{m}$ (solid dots) and for $a = 150 \,\mu\text{m}$ (solid squares). Solid lines: analytical approximation of the same quantity. In both cases, it was assumed that $n_{\text{core}} = 1$, $n_{\text{chad}} = 1.45$

u_m = Bessel zeros (2.4048, 5.52008, 8.65373...)

$$\beta(\omega) = \frac{\omega n_{\text{core}}(\omega)}{c} \left[1 - \frac{1}{2} \left(\frac{u_m c}{\omega n_{\text{core}}(\omega) a} \right)^2 \right] + \frac{i}{a^3} \left(\frac{u_m c}{\omega n_{\text{core}}(\omega)} \right)^2 \frac{n^2(\omega) + 1}{\sqrt{n^2(\omega) - 1}}, \quad (33)$$

MB

MB

Fig. 8. Group velocity dispersion, GVD, of the EH_{11} mode as a function of frequency for various fiber radii

154 Sandro De Silvestri et al.

MBI

Fig. 7. Coupling efficiency η for the hybrid modes EH_{1m} excited by a Gaussian beam as a function of normalized input spot size w/a

$$\eta = rac{4 \left[\int r J_0(u_{1m}r/a) \exp(-r^2/w_l^2) \,\mathrm{d}r
ight]^2}{w_l^2 \int r J_0^2(u_{1m}r/a) \,\mathrm{d}r}.$$

Our double-stage compressor at MBI

- G. Sansone, G. Steinmeyer et al., Appl. Phys. B 78, 551 (2004).
- N. Matuschek et.al., Appl. Phys. B 71, 509 (2000).
- G. Stibenz and G. Steinmeyer, Appl. Phys. B, in press

Shortest pulses with chirped mirrors

The filament compressor

Compressing amplified pulses

The set-up

Parameters

 $10 z_{\rm R}$

 $z_{\rm R} = \pi w_0^2 / \lambda \approx \underline{8 \, \rm cm}$

 $P=2-5 P_{cr}$

 $N_{\rm e} = 0.1 \dots 1\% \approx 10^{16} - 10^{17} \,{\rm cm}^{-3}$

Max-Born-Institute

Spectral broadening vs. pressure

Self compression results

Characteristic shape of 7.4 fs pulse

Experimental data on temporal structure

Numerical modeling

Max-Born-Institute

Experimental data on temporal structure

Agreement b/t simulation & experiment

Max-Born-Institute

What is behind self-compression?

- Numerics indicate a very complex interplay of many linear and nonlinear mechanisms
- Are they all equally important?
- Can we try to reduce to, e.g., a dynamical balance of two competing nonlinearities
- Asympotic pulse shape: Is there something like a *soliton* behind?

Pulse shaping effects inside filament ?

Kerr nonlinearity

- bound electrons, instantaneous, retarding
- Plasma nonlinearity
 - free electrons, persistent, advancing
- Self-steepening
 - blue-shift in the trailing edge (plasma)
- > Spatio-temporal effects:
 - plasma defocusing in the tail
- Dispersion (probably less important)

Instantaneous vs. Persistent Nonlinearity

ADK / PPT solitons ?

ADK solitons

 $\frac{N q_e^2}{2 m_e \epsilon_0 \omega^2} \int_{-\infty}^t w(I) dt = n_2 I(t)$ Approximate solutions: $I(t) \propto (-t)$ $n_{\rm eff}-1$

Inclusion of Diffraction

$$\frac{Nq_e^2}{2\,m_e\,\epsilon_0\,\omega^2}\,\int_{-\infty}^t w(I)\,dt'+\frac{n_2\,P_{\rm cr}}{\pi\,w_0^2}=n_2\,I$$

Self-guiding model, cf. A. Couairon & A. Mysyrowicz, Phys. Rep. 441, 47 (2007).

BUT: $w_0(t)$ is now considered as time-dependent

This enforces a boundary condition via

$$\frac{P(t)}{\pi w_0^2(t)} = I(t)$$

C. Brée et al, Laser Physics 19, 330 (2009)

Solutions of the full equations

Space-time structure of the light bullet

S

Self-channeling model

Assumption: negligible energy flow between temporal slices

consider only radial energy flow

Time

A simple model of self-compression

Light bullet structure in numerical simulations

Several simplifying assumptions...

- **1. Gaussian pulse profile assumed**
- 2. Only leading edge considered
- 3. Does self-channeling occur in the presence of Kerr, plasma, and diffraction only?
- 4. What happens when we include space-time focusing, self-steepening and the rest of the zoo?

Reduced model of filamentary propagation

Reduced model equation (paraxial wave equation with nonlinear refractive index):

$$\partial_z \mathcal{E} = \frac{i}{2k_0} \Delta \mathcal{E} + i \frac{\omega_0}{c} n_2 |\mathcal{E}|^2 \mathcal{E} - i \frac{1}{2n_0\rho_c} \frac{\omega_0}{c} \rho(I) \mathcal{E}$$
$$\rho(I) = \rho_{\rm nt} \left(1 - \exp\left(-\int_{-\infty}^t dt' W[I(t')]\right) \right)$$

$$P(z,t) = \int |\mathcal{E}(z,r,t)|^2 d\sigma_{\perp}$$
$$\partial_z P(z,t) \equiv 0$$

Surface element in the diffraction plane for the radially symmetric case:

$$d\sigma_{\perp} = 2\pi r dr$$

Optical power conserved along propagation path, no flow of energy between temporal slices

Quasi-hydrodynamic spatio-temporal shaping in filamentary propagation of fs pulses

Three-stage compression scheme

Max-Born-Institute

C. Brée et al., Opt. Exp. 17, 16429 (2009)

Comparison with experiments

Focal point

G. Stibenz et al., *Opt. Lett.*, **31**, 274 (2006) Measured with SPIDER: Stibenz & Steinmeyer, Rev. Sci. Instrum. **77**,

Space-time structure

S

