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Abstract

By combining a quantum treatment of the radiation field with a superop-
erator formalism we present compact expressions for a broad variety of co-
herent and incoherent nonlinear optical signals. Spontaneous signals are
classified according to the molecular coherence range: homodyne detected
signals result from long range two particle coherence whereas Rayleigh and
hyper-Rayleigh scattering are shown to be their short range counterparts.
The dependence of the signals on wave vector, number of molecules and the
molecular density is discussed for molecular and polymer solutes. Several
two-photon induced techniques: second harmonic generation, hyper-Rayleigh
scattering, two photon fluorescence and hyper-Raman are described within
the same framework.



1 Introduction

Nonlinear optical signals are generated by the interaction of a material system
with several laser beams. There are different types of signal classifications:
spontaneous vs. stimulated, coherent vs. incoherent and short vs. long
range. Some signals scale like ~ N are others like ~ N? with the number of
active molecules. The many types of signals are usually calculated using a
variety of approaches, making it hard to establish their precise connections.
The baffling plethora of non-linear techniques originate from varying numer-
ous matter and field parameters (transition dipole moments, energy levels,
carrier frequencies, pulse envelops, polarizations, delay times etc.). Esoteric
acronyms (CARS, CSRS, HORSES etc.) further add to the confusion. Here
we present a unified classification of these signals based on the last interac-
tion that generates the signal field. This classification serves as a basis for a
perturbative expansion, thus generating the various spectroscopic techniques.

Using a common approach the semiclassical theory of nonlinear spec-
troscopy which assumes a classical optical field interacting with a quan-
tum matter has had a great success in describing coherent measurements
[1,2,3,4,5,6, 7, 8]. The signals are written in terms of response functions.
The response functions which are obtained by a perturbative expansion of
the polarization in the incoming fields. The polarization serves as a source in
Maxwell’s equations and generates the signal mode electric field. The pertur-
bative expansion leads to various molecular pathways and the signal contains
an interference between them. The fully quantum mechanical description of
both optical field and matter developed here can treat both stimulated and
spontaneous processes [7, 8, 9, 10, 11, 12]. Describing this formalism and its
applications is the main subject of this presentation.

As an example we consider a set up where two beams of frequency w; and
wy generate a signal with frequency ~ w; + wy. Possible signals of this type
are: sum frequency generation (SFG), hyper Raleigh scattering (HRS), two
photon induced fluorescence (TPIF) and hyper Raman (HRA). These signals
are used in various spectroscopic applications for probing molecular energy
levels and ultrafast dynamical processes as well as in high resolution imaging
and nonlinear microscopy. SFG, TPIF and HRS are commonly applied for
biomolecular and cell imaging. Some studies had observed simultaneously
two types of signals e.g. SFG+TPIF and SFG+HRS in the same system
9, 10].

The different types of nonlinear wave mixing signals are summarized in
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Figure 1: Classification of nonlinear wave mixing signals.




Fig. 1. The primary classification is into stimulated (coherent) Sgr .on and
spontaneous Ssp. The latter are divided into incoherent Sgpn., coherent
short range Sspcon,sr and long range Ssp.conir- This gives for the total signal:

S = SST,coh + SSP,inc + SSP,coh,sr + SSP,coh,lr <1>

The optical signals are broadly classified as either stimulated where the signal
is generated in the direction of an existing strong classical field, or sponta-
neous where it is generated in a new direction i.e. the detected mode is
initially in the vacuum state. The next layer of classification is into coher-
ent, where the signal has a well defined phase with respect to the driving
fields, or incoherent where no such phase relation exists. Stimulated signals
are coherent, scale as ~ N and the field itself (both amplitude and phase)
can be measured by heterodyne detection. Spontaneous signals, in contrast,
can be either coherent or incoherent. The homodyne detected coherent signal
generated in a sample much larger than the optical wavelength is directional,
and scales as ~ N?. However short range correlations can induce a Rayleigh
(hyper Rayleigh) scattering signal coming from pairs of closeby molecules.
This signal is isotropic and scales as ~ N [10] .

Spontaneous incoherent signals denoted spontaneous light emission (SLE)
are generated by molecules which emit independently. They scale as ~ N and
may be further classified as either Raman (hyper Raman) or fluorescence.

The general classification shown in Fig. 1 holds to all orders in the fields.
We shall recast the possible signals using compact superoperator expressions
that can be expanded in the optical fields to generate specific signals. To
first order we only have the coherent linear response which is self hetero-
dyned, or ordinary Rayleigh scattering. The simplest model that shows all
of these signals is depicted in Fig.2 where the emitted signals are either
at or in the vicinity of w; + wy. For this model the stimulated/coherent
heterodyne detected signal is sum frequency generation (SFG). The sponta-
neous/coherent /long range signal is homodyne detected SFG. The sponta-
neous/coherent /short range signal is known in this case as hyper Rayleigh,
and the spontaneous/incoherent signal is two-photon-induced light emission.
The latter can further be classified as two-photon induced florescence and
hyper Raman.

We next briefly introduce the two commonly used detection modes: het-
erodyne and homodyne. In the semiclassical approach to an n + 1 wave
mixing measurement, n incoming waves interact with a molecule to induce
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Figure 2: Level scheme for nonlinear two photon induced single photon emit-
ted signals with frequencies in the vicinity of w; + ws.

a polarization ~ (V(r,?)) ) (this notation will be explained in the next sec-
tion). This polarization serves as a source in Maxwell’s equations for the
signal field &,.:(r,t) [11]. The polarization must be further orientationally
averaged and summed over all the molecules [3]. A more detailed analysis of
the detection including propagation effects is given in Appendix A.
Heterodyne signals, detected by interference with a heterodyne mode, give
both amplitude and phase of the nonlinear polarization. For a collection of
N molecules, this is a coherent signal obtained by adding amplitudes from
all molecules and is given by ~ SN(V (r,t)) (1 &y (r,t). Heterodyne signals
are phase sensitive and directed along one of the possible 2" phase matching

directions Ak = kg,p — kny1 = 0 kpny = > k.
j=1

Homodyne detection is phase insensitive and only measures the intensity
of the scattered light ~ |[(V/(r,t)),1|*. It can be either incoherent or coher-
ent. The former is a sum of individual molecular contributions ~ N, while
the latter is produced by molecular pairs and scales as ~ N(N —1). The co-
herence length is related to the optical phase variation between two molecules
Ak(r, —rg). For a sufficiently large Ak the phase oscillates rapidly and the
coherent part of the signal vanishes. The coherent molecular response thus
shows up in the phase-matching direction Ak = 0 and depends quadratically
~ N? on the number of active molecules.

Inelastic processes, such as Hyper-Raman scattering are incoherent and
do not produce a macroscopic electric field since different molecules emit



independently with random phases. One way to see this is by digressing from
the semiclassical picture and looking at the joint state of the molecule and
detected mode field (|mol,phot)) at the end of the process: |g,0) + «|g’, 1)
(See Fig. 2). This is a superposition of the initial state where the scattered
mode is in the vacuum state with the molecule in state |¢g) and a state when
the molecule is in the state |¢’) with one emitted photon in the detected mode.
The energy difference between the initial and final states of the molecule is
supplied by the difference between the incoming and the signal modes (in
Fig. 2 it corresponds to w; + wy — w;). The expectation value of the signal
field mode (formally defined in Eq.(3)) with this state vanishes since |g) and
|¢') are orthogonal.

Parametric or elastic scattering processes are, in contrast, always phase
matched Ak = 0. The final state which now has the form |g,0) + «|g, 1)
does yield a finite field amplitude. At this level of theory Hyper-Rayleigh
[12, 13, 14, 15] and Hyper-Raman [3, 16, 17, 10| scattering can be viewed
as elastic and inelastic counterparts of two-photon induced fluorescence (i.e.
incoherent and not phase matched).

The fully-microscopic description of the signals presented in the coming
section treats both the molecules and the optical field quantum mechanically.
This allows to classify the signals according to the initial state of the detected
mode rather than by the detection method. If that mode initially contains
a large number of photons one has a stimulated (emission or absorption),
process. But if it is in the vacuum state we have a spontaneous process.
Heterodyne detected signals are stimulated [11]. We shall mainly focus on
spontaneous processes, but present the stimulated signals for completeness.
Understanding the connection between the various signals is important for
applications to such nonlinear imaging [18, 19]. We show that the coher-
ent part of the scattering may be classified according to the coherence range.
Rayleigh and nonlinear light scattering are coherent processes involving pairs
of molecules. However they only probe short range correlations and therefore
eventually scale as ~ IN. The density dependent part of the Rayleigh signal is
associated with intermolecular interactions. That component becomes dom-
inant in the vicinity of anomalous first order phase transitions and vanishes
for ordinary first order transitions in dilute solutions of molecules.

In the next section we calculate the signals using a quantum-mechanical
description of the optical field and recast them into a form suitable for per-
turbative expansion that can be represented graphically close time path loop
diagrams CTPL [20]. Some signals scale with the single-molecule and oth-
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ers with molecular-pair distribution functions. The third section presents
statistical models for these distribution functions. Signatures of structural
phase transition are illustrated for a solution of weakly interacting molecules
or polymers. The last section summarizes our results and presents a com-
parison of the various two-photon-induced signals associated with the level
scheme in Fig. 2.

2 Spontaneous, stimulated, coherent and in-
coherent nonlinear wave mixing.

We start by partitioning the optical field into its positive and negative fre-
quency components: E(r,t) + E'(r,t). The positive frequency optical field
at point r and time ¢ is given by the operator:

n+1

Bl t) = 34Tt exp 1 g —y0) 2)

Here, a; (a}) is the annihilation (creation) operators for the j-the field mode,

satisfying the bosonic commutation relation [ai, a}] = ¢;,; and Q is the quan-
tization volume. The sum runs over all optical modes (including the detected,
n + 1, mode)

We take the origin of the coordinate at the center of the sample and
assume a point detector located at R. We define E,1(R + r,t) to be the
field generated in the sample at point r and time ¢ as seen by the detector:

2mhw,
En+1(R+r7t> = % (3>
exp(i(k,r1(R+1) — wppit
Xan+1(t) p( ( +1|(R+r|) +1 ))

To eliminate the details of the detection geometry we define the plane wave
signal mode in a local system of coordinates F,;(r,t) by Eq.(2). For a
detector far from the sample we have:

eXp(i(kn+1 R))
R

En+1 (R +r, t) ~ En+1 (I‘, t) X



Henceforth we assume that the signal mode is a plane wave. However we
shall return to the spherical waves in the semiclassical treatment given in
Appendix A. We shall calculate the field in the interaction picture (see e.g.
Eq. (8)) where we eliminate its free propagation. Thus E, . (r,t) defines the
field generated at point (r,t) in the sample. This field vanishes outside the
sample.

We shall split the detected electric field as:

En+1 (I‘, t) = (C:S(I', t) + ES(I', t)

The classical (coherent) part & (r,t) is not affected by the interaction with
matter, while the generated field Fy(r,t) is initially (¢ = —oo) in its vac-
uum state and changes its state due to the field/matter coupling. Following
Ref. [21], the signal is defined as the change in the signal mode intensity due
to the coupling with the system:

S(t) = SST(t> =+ Ssp(t) = (4)
[23?/dr<5;(r,t)E5(r,t)) —i—/dr(El(r,t)EJr,t))

In order to calculate the expectation value of the optical field we now specify
the total hamiltonian for the field and matter :

H(t) = Ho + Hin(t) (5)

Here H, describes the sample and H;,; stands for its interaction with the
optical modes. We assume that the sample is made of N identical molecules
with the positions r,, energy levels {|i)} and transition dipole moments s ;.
We shall partition the dipole operator into the excitation VT(r) and de-
excitation V(r) parts, where:

Q

2mwg

N

V(r) 225(r—ra)zzujk‘j><k’ (6)

a=1 J o k>j
Using Eq.(2) and Eq.(6), the radiation matter interaction in the Rotating
Wave Approximation assumes the form:

Hip(8) = H™(4) + H™M (1)

int int

= Epa(r,)Vi(r) + B, (r, )V (r)+

(7)

+ z”: E;(r, t)VT(I‘) + E}(R t)V(r)



The two terms in Eq.(4) represent the stimulated and the spontaneous parts
of the signals. These will be calculated by solving the Heisenberg equations
of motion for the detected mode. The contribution from the points within
the sample to the stimulated part is:

@ (e ) Bu(r, 1)) = (e, 1) ([Hing, Bu(r,1)]) = (8)

A
_ (27;2%) £ (r,)(V(x, 1))

Here we used the fact that the coherent part of the detected mode is not
affected by the interaction with the molecules. (---) denotes averaging over
the radiation and matter degrees of freedom.

To proceed further we introduce superoperators which facilitate the book-
keeping of the various field/matter interactions [20]. For an arbitrary oper-
ator A these are defined as ”Left” or "Right” type by their action on an
operator X as:

ALX = AX
ArX = XA

We further define the transformed ”Plus” and ”"Minus” superoperators:

1
A =— (A — A
\/5( L R)
1
A+:—<AL+AR)

V2

We shall recast Eq. (8) using the dipole superoperators:
(Vi(r,t)) = (Vi(r, 1)) = Tr [ViL(r, 1)p(t)] (9)

The time evolution will be calculated in the interaction picture using the
bare molecular Hamiltonian as a reference:

(V(r,t)) = (TVy(r,t)exp (—Z'\/i/dT/dI'/Hmm(T, r')))

Here \/§Hmt,— = ELVLT + EEVL — V;ER — VRE}Lij and 7 is the time ordering
operator in Liouville space which when acting on a product of the following
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superoperators it rearranges them so that their time arguments increase from
right to left.

Heterodyne detected (n + 1)-wave mixing signals in a macroscopic (N >
1) sample are generated along one of the 2" combinations of the n incoming
wave vectors ky,; = k; &= ky--- £ k,. This can be obtained by expanding
Eq. (9) to first order in n incoming modes, each interacting once with a single
molecule, and summing over all the molecules in the sample:

N

Ve, 0) gy = D6 (r —ra) (Vi) gaye™ (10)

a=1

The subscript {n} signifies that the averaging is with respect to the density
operator calculated by taking into account interactions of the incoming modes
with a single molecule. The n + 1 (signal) mode is treated separately.

When Eq.(8) together with the initial condition (Fs(r,t = —00)) = 0
and the expansion (10) are substituted into Eq.(4) we obtain the stimulated
incoherent signal:

t

SG)(t) = In Fy(AK) / dr€2 () (Vi (7)) oy (1)

The auxiliary function F}(Ak) = 3~ e!2k*e carries all information about the

macroscopic sample geometry as ngl as the spatial distribution of molecules.
It is responsible for phase matching, which is a hallmark of heterodyne de-
tected signals. Self-heterodyne signals such as pump-probe [21, 11], and
stimulated Raman/Hyper-Raman scattering also fall into the stimulated sig-
nal category.

We next turn to the spontaneous component of the signal (4). The con-
tribution from point r within the sample to this component is obtained by
solving the Heisenberg equation of motion:

LB e, 0 Eur,8)) = i{ [Hon, Bl v, 0)Eo(r, 1)]) = (12)

dt*°
=23 (%Tw) (El(r,t)V (r,1))

with the initial condition (ETE,)(t = —oo) = 0. The right hand side of this
equation may be factorized into a field and matter parts provided the density

9



operator is treated perturbatively with respect to the E; part of the signal
mode.
To first order the spontaneous signal assumes the form:

— 2Re/dr/d1'/ tenpa (r—r) (13)
/ dr / dr' i TV (0, ) VAR, 7))y

When all interactions with the optical fields occur with the same molecule
(TVL(r, T)VH(', 7')) fny assumes the form (TVz(r, T)VE(r', 7)) (36 (r — ') and
we recover the incoherent signal (13). Expanding it to first order in the in-
teractions with each of the incoming modes we obtain:

S8 an(t) = 2ReF(0) / ar / e TV (1)

Incoherent (F;(0) = N) homodyne detected signals are phase insensitive.
Examples are n photon induced Fluorescence and Hyper-Raman scattering.

The coherent part of the spontaneous signal is obtained when the opti-
cal modes are allowed to interact with all possible molecular pairs in the
sample. Interactions with different molecules are not time ordered and
(TVi(r,7)VE(r', 7)) can be factorized into (Vy(r, 7)) (Vi(r', 7')). By expand-
ing the two factors to first order in each of the n incoming modes we obtain
the coherent part of the homodyne detected signal:

S0 (1) = Re Fy(AK)| / ATt (V, (1)) o (15)

Here we have used the identity:

¢ T 1t ¢
/dT/dleﬁ/dT/dT/

The auxiliary function Fy(Ak) = > 3 ei4kFa=rs) i determined by the dis-
a f#a
tribution function of molecular pairs as well as the sample geometry. Eq. (15)

describes for example n-harmonic generation and Hyper-Rayleigh scattering.
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Egs. (11), (14), (15) constitute the formal expressions for various signals.
Specific signals will be calculated in Section 4. In the next section we
focus on the molecular and molecular-pair distribution functions: Fj(Ak)
and FQ(Ak)

3 n+ 1 wave mixing in fluids and polymer
solutions; the role of molecular distribution
functions.

We now examine more closely the role of molecular distributions in nonlinear
wave scattering. Following Ref. [22] we shall consider a system of N identical
hard sphere molecules in a solvent occupying the volume L3 ~ €. The
molecular diameter a is smaller than the wavelength A, ,; of the detected
mode. Egs. (11), (14), (15) describe the scattering due to the solute. Three
cases will be considered. First, we will look at the scattering from an ideal
solute with no long range order as depicted in Fig. 3(c). Second we investigate
the scattering from a solution of polymer molecules [23] (See Fig. 3(d)).
Finally we discuss a real solution close to a phase transition point.

For large samples L|Ak| > 1 the problem can be treated in the contin-
uum limit, where Maxwell’s equations self-consistently connect the polariza-
tion (V(r, %)),y and the induced electric field E,;1(r,t). The signal is then
calculated in two steps. First, the atoms act as the primary sources induce
the field at the aperture [24]. This field serves as the secondary source and
for the signal, which is calculated using the propagator formalism. In this
limit both semiclassical and quantum approaches yield the same result as
shown in Appendix A.

In the opposite limit L|Ak| < 1 the phase factor Ak - r does not change
appreciably within the sample and the sample can no longer be treated as a
continuous medium. Statistical molecular properties then affect the signal.

3.1 Stimulated vs. Spontaneous incoherent signals.

Both signals described by Egs. (11) and (14) are determined by the molecular
distribution. The probability to find a solute molecule in the volume dr
centered at r is given by Fj(r)dr/€). The molecular distribution function
is normalized so that its average value in the sample volume ' is the total

11
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Figure 3: (a) schematic of nonlinear wave mixing. 6 is the phase match-
ing angle between stimulated (red thick line) /spontaneous (wavy line) and a
linear combination of the incoming modes (doted line). (b) the angular dis-
tribution of the stimulated signal from an ideal solute of noninteracting (blue
rapidly oscillating curve) and polymer solute (green smooth curve). The pa-
rameters used are: L/A = 10, N = 100, b = 0.01. F;(Ak) is normalized to
the number of molecules. (c) ideal solute. (d) polymer solute.
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number of molecules: (N/€') [ Fy(r)dr = N. By converting the summation
Q/

over a large number of independent molecular coordinates r,, to an integration
over r we obtain:

N iAk-r
F1<Ak) = @ Fl(r)e Ak dr (].6)
Q/
More generally, the molecular distribution function must also include internal
molecular degrees of freedom and rotational averaging. These are neglected

here.

3.1.1 Ideal solutions.

In the absence of long range order (Fi(r) = 1, Fig.3(c). Assuming that Ak
is in the 2 direction as shown in Fig.3(a), straightforward calculation of the
integral (16) yields:

Fy fiuia(Ak) = NP pia(6) (17)

with the polarization angular distribution:
Piria(0) = sinc(2rLsin(0/2) /A1)

Here X is the wavelength; 6 is the angle between detected k,, 1 mode and the
induced polarization given by a linear combination of the incoming modes

3.1.2 A polymer solution.

The molecular probability distribution of polymers (Fig.3(d)) can be calcu-
lated using the theory of random walks [25]:

1>7

= (i) o (mies) W

The walk step b depends on the polymer geometry. W; ;(r)dr is the prob-
ability of finding jth polymer unit at distance r from the ¢’th unit in the
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volume element dr. Converting the summation in Eq. (19) to an integration
and substituting Eq. (18) in Eq. (16) we obtain:

Fl,poly(Ak) - Nppoly(ea N) (20)
2
o0, N) =
Pp ly( ) U(N, 0)
812 VN
3 A

[N — 1+ U(N,0)]

U(N,0) = sin?(0/2)

Eq. (11) together with Eq. (17) or (20) imply that the stimulated signal is
peaked in the direction Ak = 0. Long-range order now breaks the linear
~ N dependence of the signal of ideal solutions.

3.2 Spontaneous coherent signals.

Spontaneous coherent signals given by Eq. (15) defined as the Fourier trans-
form of the molecular pair distribution function:

N(N -1 ,
FQ(Ak) = %//FQ(ra,rﬁ)elAk(r“rﬁ)dradrg (21)
Q/

Here N(N — 1)/2QFy(ra,15)dr,rs is the joint probability of the molecules
in the pair between r,,rz and r, + dr,,rg + drg. The pair distribution
function is normalized so that when integrated over the sample it gives the
total number of molecular pairs:

MQVT;U/I/FQ(I'O“I.B)dradrﬁ = w (22)

We shall partition F3 as:

Fy(ro,rp) = lim  Fi(re)Fi(rg) + g2(ra, 1p) (23)

[re,g|—00

where r, 3 = r, —rz. The function g, represents the deviation of Fy(r,,rp)
from a product of single molecule distributions Fi(r,)Fi(rg) and is a measure
of intermolecular interactions.
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3.2.1 Long-range coherence.

The first term in Eq. (23) when substituted into Eq. (15) yields the long
range coherent spontaneous signal with the molecular distribution function:

Fy(Ak) = N(N = 1)Pf,4(0) (24)

Note that for linear light scattering (n = 1), the signal (24) is indistinguish-
able from the incident beam. However the signal can be clearly resolved for
nonlinear scattering with non-collinear beam geometry.

A similar result holds for a collection of N’ polymers each made of N
molecules. In the absence of long range order between the polymer molecules,
one can use Eq. (24), with N — N’'N; (See the neglected first term in Eq.
(11) of Ref. [25]).

3.2.2 Short-range coherence.

Short-range coherent spontaneous signals are given by Eq. (15). The distance
between the molecules involved in the light-matter interaction is restricted
by g2(ra,rs), so that 7,5/ 41 < 1 and the exponential phase factor in
Eq. (21) can be set to unity.

We start by considering a solution of hard sphere molecules of diameter
a , the volume per solute molecule: 7a®/6 = /N = v. In this case [26]:

_ 0, rag>a
nlrag) = { % T2 (25)
Using the identity & [ [ drarsga(ra,rs = [ dra sgs(ra,s) we obtain:
N -1
Fs fruia(Ak) = B (26)

The short-range interaction for a collection of N’ polymer molecules each

comprised of N molecular segments has been calculated in Ref. [25]:

N4
XP:

V2 poly

F oty (Ak) = (0,N) (27)

where v' = Q' /N’ is the volume per single polymer molecule and X describes
the average short range interaction between the segments of two polymer

molecules. Note that the first term in Eq. (13 (a)) of Ref. [25] corresponds
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to the extra-short range coherent signal from the collection of the thread-like
polymer molecules ~ NQ—]YFLpoly(Ak). The coherence length is limited to a
single polymer molecule.

To discuss the validity of the hard sphere model (26) we impose cer-
tain limitations on the solute molecules and their interactions. The solute is
treated as non-ideal gas of classical molecules capable of undergoing a ther-
modynamic phase transitions. Second, the pair interaction potential falls off
with the fourth or higher power of the distance. Third, the total potential
energy of the system is representable as the sum of pair potentials which only
depends only on the distance.

The deviation of the solute from the ideal gas is described by the fugacity
Z normalized in density v~! units:

Z =v"texp (— Z Blv_l> (28)
1>1

The irreducible integrals ; are defined so that for the ideal gas 8, — 0. We
rewrite Eq.(28) in its differential form:

Oz _ > 1t —1 (29)
>1

Olnv

The pressure of the gas P above the solvent also shows the deviation from
the ideal gas, which can be formally written with irreducible integrals as:

NET
(52)r =, (30)
NKT
@), ~ - (1~ ) -
>1

where k is the Boltzmann constant and 7' is the temperature. Using the
generalized form of the grand partition function (28), as well as connection
between the cluster and irreducible integrals, it has been shown [26, 27] that:

X 7202 [ O2P
« d af = Torrey \ 927 :
Sy /92(1' 8)dra s 2kTY (822>T -

where P is the osmotic pressure. Substituting Eq.(30) into Eq.(32) and
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utilizing Eq.(29) yields:

1 v 1
dros—=—— |1 ——
QQ/ /gZ(ra:B) ravﬁ 29/ 1 _ 2 :Z/Blv_l (33)
>1

Combining with Egs. (23) and (21) we get:

N -1 1
Pt = 5= | 1o | = B0
>1
N -1

| NET (0P !
o (ae),
This confirms that the short range coherent spontaneous signal vanishes in
an ideal solution. It also suggests that short range coherent signals from the
solute in the absence of strong Van-Der-Waals forces is not phase sensitive
and depends on the solute density v~!. It thus represents Rayleigh (n = 1)
and Hyper-Rayleigh (n > 1) scattering,.

The first-principles calculation of the irreducible integrals [; is a chal-
lenging task [27]. We next discuss the role of > I3v~!. Phase transitions
are characterized by divergence of the fugacity density series (28) on the real
axis at T' = T,. Hence, Y IBv~" either diverges (first order transitions) or
becomes unity ( anomalous first order transitions) [28, 29]. In the first case,
S~ 18w~ increases at the singularity and reaches unity at some temperature
Ty lower than the temperature at which the singularity moves into the com-
plex plane T. Close to Ty the slight change in the partial volume of the solute
dos not change with pressure and the second term in Eq. (34) dominates the
short range coherent spontaneous signal.

An anomalous first-order transition occurs in the temperature range T, <
T, < T.. One can then neglect the second term in Eq. (34) and the signal
coincide with the hard spheres model (26). The (N — 1)/2 factor signifies
that only pairs of nearby molecules contribute to the short range coherence.

4 Application to two-photon-induced signals.

We have presented a unified microscopic description of n 4+ 1 wave mixing
processes. The nonlinear signal defined as the change in the intensity of the
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detected mode due to the other n optical modes is formally expressed in
terms of polarization superoperators which are calculated by the Heisenberg
equations of motion for the field (stimulated signals) or for the field intensity
(spontaneous signals). We have identified four types of signals, and connected
them to standard statistical quantities, namely the molecular and molecular
pairs distribution functions. Our formal results can be summarized as follows:

S(n) (t) = Sg;z (t) + Sgg,icoh (t) + Sgg,coh,lr (t) + ng,coh,sr (t) (35)

sgo =mn{ P 4 [aresnmimim e

—0o0

t T
Snenl) = 2 N [ dr [ ares TV (60

t

S eonsr8) = NN = D[Ppaa®) [ drem Virml - (38)

—00

-1
" —Nelpe (1= (1= 180"
Sélz,coh,sr(t) - 2 ( 12231 ! X (39)
NPty (0, N) + 22 X P2, (9, N)

poly
t
<] / dr eV, (7)) gy

Ssr represents the stimulated heterodyne detected signals including self-
heterodyne detected techniques (pump-probe) and stimulated Hyper-Raman
scattering. The remaining terms describe spontaneously generated signals.
Sspincon 18 incoherent, phase insensitive and scales as ~ N (e.g. multi-
photon induced fluorescence). Sspeonir describes the coherent response of
all possible molecular pairs. Linear signals of this type are indistinguishable
from the incident beam. Nonlinear signals include Hyper-Raman scattering
and sum/difference frequency generation.

Ssp.cohsr 15 @ short-range coherent spontaneous signal. Identical oriented
polymer molecules give a directed phase matched signal. The degree of phase-
matching depends on polymer size, internal structure and interaction between
the polymers. Using the random-walk model we showed that the signal
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contains two terms in the molecular density v~

We have further investigated nonlinear scattering from a non-ideal solu-
tion described by the osmotic pressure, density and fugacity. The signal is
phase-insensitive and can be recast into an infinite series in the molecular
density " 18w, We discussed two limiting cases of ordinary and anoma-
lous first order transitions and compared them to the hard sphere model.
Such signals are both phase-insensitive and depend on the molecular density.
We associated them with Rayleigh and Hyper-Rayleigh scattering.

Egs. (35) provide a convenient starting point for the superoperator CTPL
expansion of the nonlinear polarization based on the rules are given in Ap-
pendix B. We shall illustrate this for frequency domain spontaneous signals
generated by two incoming classical fields: e~ and Ee~ 2! in the vicin-
ity of two-photon resonances w3 &~ w; + wy. The molecules are described by
the three level ladder system: {{|g),|¢")},le),|f)}, shown in Fig. 4(B). The
lowest manifold! contains the ground state |g) and higher level |¢’).

The incoherent signal (37) gives rise to hyper-Raman and two-photon in-
duced fluorescence which may be distinguished by including dephasing pro-
cesses [1]. This goes beyond the scope of this presentation.

Since all incoming modes are classical, the frequency-domain signals can
be recast in terms of nonlinear susceptibilities using the CTPL shown in
Fig. 4(C1):

SHRAM,TPIF(—W3; Wa, wl) = (40)
= 2NRe|51|2|52|2X(LS])g___(—W3;w3; —Wa, Wa, —W1,W1)

Here the susceptibility is recast in the mixed representation (L/R for the
generated mode, and +, — for the classical incoming modes [20]). It can be
written in terms of the Green’s function G(w) = h/(hw — Hy + ihy)~" where

!The model also describes Brillouin scattering [30, 31]. That is the moving interfer-
ence pattern, provided by the incoming pump fields and Stock shifted backward scattered
generated wave, may create an acoustic wave. This, in turn, lifts the degeneracy of the
molecular ground state and modifies the density dependent pre-factor for the short-range
coherent signals. In some cases the acoustic wave may also reflect the incoming modes
via spectral Bragg diffraction thus increasing the power of the generated signal. Brillouin
scattering is a type of Raman scattering.
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Figure 4: A three wave mixing process with two classical and one quantum
modes: (A) phase-matching configuration; (B) molecular level scheme; CTPL
for the incoherent Hyper-Raman and two-photon induced fluorescence (TPF)
(C1) and long range coherent Homodyne detected sum frequency generation
(SFG) as well as short range coherent Hyper-Rayleigh (C2). (D) measured
spectra from PMMA polymers of oriented DCM [18].
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v is a dephasing rate:
Xs_-zs})%———<_w37w37 _w27w27 _WIJWI) = (41)

5
= # Z(gWGT(wg + W) VG (w, + wi 4 wy)VTx
’ P

xGT(wg + w1+ wy —w3)VG(wy +wy + wg)VTG(wg + wl)VT|g>

Here p stands for permutations of the incoming field within each branch of the
loop diagram. Expanding Eq.(41) in molecular energy levels hweg, iwe s, hwgg
and the corresponding transition dipole moments feg, fcf, ftrg We finally ob-
tain:

X%;Zz,,,(—w3;w3, —Wy, Wo, —W1,W1) = (42)
i° |:uegﬂef,ufg/‘2
R — X
5!h° Zp: gzg; [(w1 — weg)? + V2] [w1 + wa — wpy + 7]
1

X

(w1 +wa —wpy — Y] (w1 + we — w3 — wyy — 7]
The long-range coherent signal (38) for our model is a homodyne-detected
sum frequency generation (SFG) [19, 32, 18]:
Ssra(—ws;wa,w1) = (43)
= N(N = DIEPIE Pruuia(®)6(ws — wp = wi)xi? _(~wsi wa,w)|?
This susceptibility can be calculated using the CTPL in Fig.4(C2):

Z'2

X2 _(—wswa, wi) = > g7z 9V Glwy +wi + w2)VIG(wy +wi)VT|g) =

p
i Hgelteflhfg
= , , 44
zp: 21h? zg: [w1 — weg + 1] w1 + wo2 — wyr = 7] (44)

The short-range coherent signal (39) for our model is the density dependent
hyper-Rayleigh (HRAY) scattering [33, 12, 13, 14]:

SHRAY(—W?,; Wy, UJ1) =

—1
o (1 () ) ).

>1
N Pooty (0, N) + X, X P2, (6, N)
X |E12|Ea 210 (ws — wa — wi) X (—ws; wa, w2 (45)
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In Fig. 4(D) we display an experimental spontaneously generated signal from
a polymer solute [18]. The SFG signal has a sharp resonance, as expected
from the delta function in Eq. (43), while the TPIF signal is broadened and
covers the range of wy 4 in accordance with Eq. (40). The hyper-Rayleigh
signal (4) has the same resonance as SFG, since both are determined by the
square of the second order susceptibility.

Note that all the signals discussed above are generated by classical in-
coming fields, and may be also calculated using semiclassical susceptibilities.
However the present quantum treatment can predict signals generated by
non-classical incoming modes [34, 35, 36]. Furthermore, even though we ne-
glected the molecular orientational degrees of freedom, they play important
role in distinguishing between SFG and HRAY processes. To take them into
account we need to add a superscript to the transition dipole moment Még
indicating its orientation with respect to the i-th component of the optical
field. The intensity of (43) and (4) signals is then proportional to:

(e ) (g ) (1 ) bt 125 ) v (46)

where primed and unprimed indices denote two different molecules in the
molecular pair; (- - )4, is rotational averaging [33]. For long-range coherent
signals such as SF'G, correlation between the two molecules in the pair is neg-
ligible and Eq. (46) can be factorized as: |<u;eu£f,u’}g>mv|2. In an isotropic
media, this vanishes by symmetry [10, 37] leaving only the short-range co-
herent signals HRAY.
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6 Appendixes

A Semiclassical vs. quantum field derivation
of heterodyne-detected signals.

In this appendix we calculate the heterodyne detected incoherent nonlinear
signal from a linear chain of molecules which interact with n + 1 classical
optical fields. The chain extends between —L /2 to L/2 along the x axis. The
heterodyne detected signal is given by the electric field of the signal mode
at x = X far from the sample, as shown in Fig.5. We shall demonstrate
equivalence of the semiclassical and quantum approaches.

Following Ref.[24] the semiclassical calculation will be divided into two
steps. We first derive the electric field on the auxiliary object (aperture)
via Maxwell’s equations with the optical field driven by the nonlinear polar-
ization of the atomic primary sources. Second, the aperture serves as the
point secondary source of a spherical signal wave which is calculated with
the propagator formalism.

For kg3 L > 1, the sample can be treated as a continuous medium. The
incoming waves create a nonlinear polarization wave along the sample:

P{n}(l‘, t) = Pn(t) exp (Z (kz{n}x - w{n}t)) (47)
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where P,(t) is slowly varying |2 Py ()] < |winy Ppny(t)]. This polarization
is the primary source of the generated mode whose electric field is given by:

En+1(l’, t) = gn-i-l (.2?, t) exp (Z(kn-i-lx - wn-&-lﬂ) (48)

where &,11(t) is the slowly varying field amplitude (in space and time).
The electric field of the generated mode and the polarization induced by
the incoming modes are connected by Maxwell’s equations:

02 ki \2 02

<@ + (w i) @) Ep(2,t) = (49)
47 92

—gwp{n}(% t)

Substituting Eq. (47), (48) into (49) and using the slowly varying amplitude
approximation for the generated and polarization we get:

, 0
an-l—l%gn-i-l(xvt) = (50)
)
— —27?7]3{”} (t) exp (i(Akx — (Wns1 — Winy)t))
At the beginning of the illuminated region the amplitude of the generated
mode vanishes &,.1(—L/2,t) = 0. Using this condition and integrating

Eq. (50) over the sample range we obtain the generated mode at the aperture:

.9
2miw i

Ena(L)2,t) = = Py () Lsinc(AkL/2) x (51)

kn+1c
x exp (1(kp41L/2 — wpiat))

The signal field is given by Fresnel diffraction from a point-like secondary
source which correspond to a single Huygens wavelet:

Eppi (X, ) = (52)
- % By (L)2,t) exp (i(X — L/2)kps1) =
- an?w Py () Lsinc(ARL/2)%



Here n(wy11) is the refractive index of the sample and the 1/X factor ac-
counts for the spherical nature of the Huygens wavelet. Unlike in the quan-
tum calculations where the optical field is in the interaction picture and
propagation effects are eliminated, F,,; in Eq. (52) is the actual field at
point X rather than the field generated at that point.

We now turn to the signal obtained from a quantum description of the
field. Here each atom is the primary and only the source of the signal wave.
E,+1(z,t) is the field generated at the point x since we are in the interac-
tion picture where the free propagation is eliminated. The signal wave is
now given by the interference from the Huygens wavelets constructed from
E,i1(z,t) as in Eq. (3). Using Eq. (7) one can obtain equation of motion for
the photon annihilation operator:

d ) n
an+1 |:Hz(nt+1) an1(t)| = (53)

/2 n
—z/dx s LV (2, ) N iny exp (—i(kny12 — Wyiat))
n+1

We shall integrate Eq. (53) under the following conditions:
1. the expectation value of the polarization operator is given by Eq.(10);
2. initially the polarization (V(x, —00)),y is zero;
3. the polarization has a slowly varying temporal amplitude:

t

[ WV Ddr = Py 22200,

—ZW{n}

—00

From Eq. (3) we obtain the signal optical field:

—2N7wp i1 (i(kpy1 X — wpgrt)) %

Eni1(X,t) = 0, e < (54)
L/2
X Ppyq(t) / exp (iAkx)dx
~L/2
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Using the resonant condition wy41 — wpmy ~ 0, and Eq. (16), (17) we finally
get:

2T N
Qnit X
X exXp (Z(knJrlX - wn+1t))

En+1(X7 t) - —

Py (t)sinc(AkL/2)x (55)

By comparing Eq. (55) with (52) we find that the semiclassical and the
quantum approaches give identical results, apart from the factors L/n/(w,.1)
vs. N/Q,41 which are model specific and arise from the single signal mode
approximation. The heterodyne signal is obtained by treating the heterodyne
wave as a spherical wave emitted by the aperture (which bring the Goui
phase [24] factor i/(k,11X)): E(X,t) = i/(kn1X)E(L,t) which brings up
the Goui phase factor i/(k,+1X). Substituting the above equation along with
Eq. (55)(or (52)) into the signal Eq. 4:

Suer ~ (V(r, t)>{n}5;+1/X2(r, t)

Formally we apply the Goui phase twice in Eq. 4 for propagating the sig-
nal and for the heterodyne part. This leads to an overall pre-factor of
1/(kny1X)?.  the standard semiclassical procedure skips the propagation
steps and uses Eq. (51) directly to yield E, 1 ~ iP,.

B Generalized susceptibilities and their CTPL
representation.

In this appendix we introduce the generalized susceptibilities used in the
last section. These are based on the superoperator non-equilibrium Green’s
functions (SNGF’s) [38, 39]. The n'" order SNGF’s are defined as traces of

time ordered products of such superoperators:

(TAL) AL(tn) - A (tamin) A () . A_(1))

(.

where m = 0,...,n. The SNGF’s may contain an arbitrary number of +

and — superoperators. The chronologically last superoperator must be a
”+” one, otherwise the SNGF vanishes.
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The material V and optical E SNGF’s are defined as:

Vi (Tt ) = (56)
(TVL(T)V, (tn) ...V, (t1))
ES) (b, tr) = (57)

(TE,(tn) - ( 1)

where subscript v is the superoperator index which depends on the repre-
sentation; V! =V, + VI and the net field operators. SNGF’s of the form

Viml _ give causal ordinary molecular response function of m®™ order.
The material SNGF of the form V(fi - represent m*™ moment of molec-
ular fluctuations. The material SNGF of the form VTJ_ NI indi-

m/ m—m/

cates changes in m'"" moment of molecular fluctuations induced by m —n
light /matter interactions. In the other representation the material SNGF

Ith

V(Lmi LR R represent a Liouwille space pathway with n+ 1 interactions

n m—n

from the left (i.e. with the ket) and m — n interactions from the right (i.e.
with the bra).

The average material field in Egs. (35)-(39) can be written in terms of
the defined above SNGF’s as:

<VL(T)>{n}:%Z...Z/dtn...dtl (58)

OV (7t 1) X
El(/:,) Nz ( ny atl)
where t,,, ... tl are the incoming modes light/matter interaction times. The

factor ©(1) = H 0(T —t;) guarantees that the 7 is the last light-matter inter-

action with the detected mode which has been taken care of separately. The
indices 7; are the conjugates to v; and are defined as follows: the conjugate
of + is —. However the conjugate of L is L and R is R. Eq. (58) implies
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that is the excitations in the material are caused by fluctuations in the op-
tical field and vice versa. Here we use a mixed representation in order to
separate classical incoming (+ representation) and quantum detected (L, R
representation) optical modes.

Egs. (40), (43), (4) were obtained by recasting material SNGF’s in Eq. (58)
into the form of generalized susceptibilities. These are formally defined as in
the frequency domain by performing a multiple Fourier transform:

X(LnV)n...Vl(_wn-i-l; Whny oot awl) = (59)
/ dT . dtl@(T)ei(wntn+...+w1t1)

(—wpy1 +wn+ ...+ Wl)V(Lnu)n...yl (T, tn, ... t1)

The SNGF XT)— _(—wni1;Wn, - - - ,wi) (with one 4+ and the rest — indices)

n

are the n'* order nonlinear susceptibilities or causal response functions. Oth-
ers can be interpreted similarly to their time domain counterparts (56).

The generalized susceptibilities written in terms of L, R superoperators,
can be represented by close-time path loop (CTPL) diagrams introduced
by Schwinger-Keldysh many body theory. The following rules are used to
construct these diagrams [21, 11]:

1. Time runs along the loop clockwise from bottom left to bottom right.

2. The left branch of the loop represents the "ket”, the right represents
the "bra”.

3. Each interaction with a field mode is represented by an arrow line on
either the right (R-operators) or the left (L-operators).

4. The field is marked by dressing the lines with arrows, where an arrow
pointing to the right (left) represents the field annihilation (creation)
operator E,(t) (El(t)).

5. Within the RWA, each interaction with the field annihilates the photon
E,(t) and is accompanied by applying the operator V.I(¢), which leads
to excitation of the state represented by ket and dexcitating of the state
represented by the bra, respectively. Arrows pointing ”inwards” (i.e.
pointing to the right on the ket and to the left on the bra) consequently
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cause absorption of a photon by exciting the system, whereas arrows
pointing ”"outwards” (i.e. pointing to the left on the bra and to the
right on the ket) represent dexcitating the system by photon emission.

6. The observation time t, is fixed and is always the last. As a convention,
it is chosen to occur from the left. This can always be achieved by a
reflection of all interactions through the center line between the ket
and the bra, which corresponds to taking the complex conjugate of the
original correlation function.

7. The loop translates into an alternating product of interactions (arrows)
and periods of free evolutions (vertical solid lines) along the loop.

8. Since the loop time goes clockwise along the loop, periods of free evo-
lution on the left branch amount to propagating forward in real time
with the propagator give by the retarded Green’s function G. Whereas
evolution on the right branch corresponds to backward propagation
(advanced Green’s function GT).

9. The frequency arguments of the various propagators are cumulative, i.e.
they are given by the sum of all "earlier” interactions along the loop.
Additionally, the ground state frequency is added to all arguments of
the propagators.

10. The Fourier transform of the time-domain propagators adds an addi-
tional factor of i(—i) for each retarded (advanced) propagator.

11. The overall sign of the SNGF is given by (—1)V%, where Ny stands for
the number of R superoperators.
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