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Eigenvector Research, Inc., Software License Agreement 

READ THE TERMS AND CONDITIONS OF THIS LICENSE AGREEMENT CAREFULLY BEFORE USING THIS 
SOFTWARE. THIS LICENSE AGREEMENT REPRESENTS THE ENTIRE AGREEMENT BETWEEN YOU (THE 
“LICENSEE” - EITHER AN INDIVIDUAL OR AN ENTITY) AND EIGENVECTOR RESEARCH, INC., (“EVRI”) 
CONCERNING THE PLS_TOOLBOX COMPUTER SOFTWARE CONTAINED HEREIN (“PROGRAM”), AND THE 
ACCOMPANYING USER DOCUMENTATION. 

BY USING THE SOFTWARE, YOU ACCEPT THE TERMS OF THIS AGREEMENT. IF YOU ARE NOT WILLING TO 
DO SO, RETURN THE UNOPENED SOFTWARE IMMEDIATELY FOR A FULL REFUND.  

LICENSE GRANT: This license permits licensee to install and use one copy of the Program on a single computer. If 
licensee has multiple licenses for the Program, then Licensee may at any time have as many copies of the Program and its 
Electronic Documentation in use as it has licenses. “Use” means that a copy is loaded into temporary memory or installed 
into the permanent memory of a computer, except that a copy installed on a network server for the sole purpose of 
distribution to other computers is not in “use”. Licensee is responsible for limiting the number of possible concurrent users 
to the number licensed. Each copy of the Program may be used on a backup computer (when the original is disabled) or a 
replacement computer. Replacements may be either permanent or temporary, at the same or different site as the original 
computer. The Hardcopy documentation provided with the Program may not be copied. 

Licensee shall use the Program only for its internal operations. “Internal operations” shall include use of the Program in the 
performance of consulting or research for third parties who engage Licensee as an employee or independent contractor. 
Licensee may allow use of the Program by employees, consultants, students and/or (in the case of individual licensees) 
colleagues, but Licensee may not make the Program available for use by third parties generally on a “time sharing” basis. 

Licensee may make copies of the Program only for backup or archival purposes. All copies of Program, Electronic 
Documentation and Hardcopy Documentation shall contain all copyright and proprietary notices in the originals. Licensee 
shall not re-compile, translate or convert “M-files” contained in the Program for use with any software other than 
MATLAB®, which is a product of The MathWorks, Inc. 3 Apple Hill Drive, Natick, MA 01760-2098, without express 
written consent of EVRI. Licensee shall not re-distribute “M-files” contained in the Program, or any derivative thereof, 
without express written consent of EVRI.  

Licensee shall take appropriate action by instruction, agreement, or otherwise with any persons permitted access to the 
Program, so as to enable Licensee to satisfy the obligations under this agreement. 

TERM OF AGREEMENT. This Agreement shall continue until terminated by EVRI or Licensee as provided below. 

TERMINATION. EVRI may terminate this license by written notice to Licensee if Licensee (a) breaches any material term 
of this Agreement, (b) fails to pay the amount charged for this license within Thirty (30) days after the date due, or (c) 
ceases conducting business in the normal course, becomes insolvent or bankrupt, or avails itself of or becomes subject to 
any proceedings pertaining to insolvency or protection of creditors. Licensee may terminate this Agreement at any time by 
written notice to EVRI. Licensee shall not be entitled to any refund if this Agreement is terminated, except of license fees 
paid for any Licensed Product for which the testing period has not expired at the time of termination. Upon termination, 
Licensee shall promptly return all copies of the Programs and Documentation in Licensee’s possession or control, or 
promptly provide written certification of their destruction. 

LIMITED WARRANTY; LIMITATION OF REMEDIES. For a period of ninety (90) days from delivery, EVRI 
warrants that (a) the media shall be free of defects, or replaced at no cost to Licensee, and (b) the Program will conform in 
all material respects to the description of such Program’s operation in the Documentation. In the event that the Program does 
not materially operate as warranted, licensees exclusive remedy and EVRI’s sole liability under this warranty shall be (a) the 
correction or workaround by EVRI of major defects within a reasonable time or (b) should such correction or workaround 
prove neither satisfactory nor practical, termination of the License and refund of the license fee paid to EVRI for the 
Program. THE FOREGOING WARRANTY IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, 
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A 
PARTICULAR PURPOSE. EVRI SHALL NOT BE LIABLE FOR ANY SPECIAL, INCIDENTAL OR 
CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION LOST PROFITS. Licensee accepts 
responsibility for its use of the Program and the results obtained therefrom.  
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LIMITATION OF REMEDIES AND LIABILITY. The remedies described in this License Agreement are your exclusive 
remedies and EVRI’s entire liability. IN NO EVENT WILL EVRI BE LIABLE TO YOU FOR ANY DAMAGES, 
INCLUDING LOST PROFITS, LOST BENEFITS, OR OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES, 
RESULTING FROM THE USE OF OR INABILITY TO USE THE PROGRAM OR ANY BREACH OF WARRANTY. 
EVRI’s LIABILITY TO YOU FOR ACTUAL DAMAGES FOR ANY CAUSE WHATSOEVER, AND REGARDLESS 
OF THE FORM OF ACTION, WILL BE LIMITED TO THE MONEY PAID FOR THE PROGRAM OBTAINED FROM 
EVRI THAT CAUSED THE DAMAGES OR THAT IS THE SUBJECT MATTER OF, OR IS DIRECTLY RELATED TO, 
THE CAUSE OF ACTION. Some states do not allow the exclusion or limitation of incidental or consequential damages, so 
the above limitation may not apply to you. 

GENERAL PROVISIONS. Licensee may not assign this License without written consent of EVRI, except to an affiliate, 
subsidiary or parent company of Licensee. Should any act of Licensee purport to create a claim. lien, or encumbrance on any 
Program, such claim, lien, or encumbrance shall be void. All provisions regarding indemnification, warranty, liability and 
limits thereon, and protection of proprietary rights and trade secrets, shall survive termination of this Agreement, as shall all 
provisions regarding payment of amounts due at the time of termination. Should Licensee install the Programs outside the 
United States, Licensee shall comply fully with all applicable laws and regulations relating to export of technical data. This 
Agreement contains the entire understanding of the parties and may be modified only by written instrument signed by both 
parties. 

PAYMENT: Payment is due in United States currency within thirty days of receipt of the Program. Absent appropriate 
exemption certificates(s), Licensee shall pay all taxes. 

GOVERNMENT LICENSEES. RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by the U.S. 
Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer 
Software clause at DFARS 52.227-7013. 

Licensor is Eigenvector Research, Inc., 3905 West Eaglerock Drive, Wenatchee, WA 98801.  
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1. Introduction 
About This Software 

PLS_Toolbox is a collection of essential and advanced chemometric routines that work 
within the MATLAB™ computational environment. It contains the tools required by 
engineers and scientists to explore their data and build predictive models. PLS_Toolbox 
gets its name from the Partial Least Squares (PLS) regression method, which has become 
the standard calibration method in many chemical applications. Although PLS_Toolbox 
has grown far beyond just PLS, the name has been retained for the sake of continuity. 

Originally released in 1991, the routines in PLS_Toolbox grew out of the authors’ 
research and applications and were subsequently refined for publication as a software 
package. The original software routines shared the basic theme of multivariate analysis, 
multivariate calibration, and multivariate statistical process control (MSPC). Over the 
years, the application areas have expanded along with the tool set. Particular emphasis 
has been placed on routines for use in analytical chemistry, especially spectroscopy, and 
on the development of multi-way tools for analysis of 3-way and higher arrays.  

Version 4.0 significantly expands the modeling and statistical analysis functionality of 
PLS_Toolbox, as well as incorporating graphical user interface (GUI) improvements to 
make conducting an analysis faster and more convenient. In addition to a handful of new 
"top-level" analysis functions, PLS_Toolbox now contains four additional "toolsets": 
robust tools from the LIBRA toolbox (released in cooperation with Professor Mia 
Hubert's research group at the Katholieke Universiteit Leuven); statistical distribution 
analysis tools; peak fitting tools;and non-linear optimization tools. These toolsets are 
available as sub-folders for use independently as PLS_Toolbox tools, but are also 
integrated to various extents into the existing modeling and analysis tools. The GUI 
changes in version 4.0 include a greatly expanded "top level" workspace browser; 
improved access to algorithm options and other improvements in the main Analysis GUI, 
including the addition of MLR and MPCA analysis methods; and expanded data editing 
options in the DataSet editor. Chapter 15 contains a detailed description of changes in 
this release of PLS_Toolbox. 

Users of earlier versions have provided much of the impetus for inclusion of additional 
routines and improvements to existing routines. We encourage you to make suggestions 
for routines you would find valuable for inclusion in future versions, and appreciate your 
comments on how we can improve PLS_Toolbox. We are especially indebted to those of 
you who have shared your routines and improvements to our routines with us. 

PLS_Toolbox contains a wide variety of tools for the analysis of chemical data. 
MATLAB “demos” are included that demonstrate the functions in the package using data 
sets that are also included. These “demos” guide the user through the steps involved in 
different analyses and show the capabilities of the routines. The demos are probably the 
best way to become familiar with the command-line use of the software and we 
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recommend that the new user (and users re-familiarizing themselves with the routines) 
run these while reviewing the manual. All main functions include demos that describe the 
use of the function. These are accessed in a standard way: by executing functionname 
demo at the command prompt (e.g. pls demo for help on pls). The ‘helppls’  function, 
which produces a window that allows the user to browse PLS_Toolbox functions by 
topic, name or category, can also be used to execute demos. 

PLS_Toolbox is frequently updated with new routines as research in the field of 
chemometrics continues. It is the intention Eigenvector Research Inc. to keep 
PLS_Toolbox as close to the state-of-the-art as practical. As our own research in 
chemometrics continues we will add routines that we find useful. Every attempt will be 
made to turn significant research results, whether our own or those of others, into 
working methods in the shortest time possible. New routines will initially be distributed 
to our users through our web site at www.eigenvector.com, and then incorporated into 
future versions of the toolbox. It is our goal to make PLS_Toolbox a repository of current 
state of the art techniques, and include these techniques long before stand-alone packages 
appear on the market.  

Disclaimer 

While every effort has been made to ensure that this package is free of “bugs” and 
produces accurate results, this package comes with no warranty, expressed or implied. 
The authors are not responsible for any loss of data caused by this software, or for any 
damage to property or personal injury resulting from use of this software. Please see the 
license agreement inside the front cover of this manual for more details. 

About This Manual 

The PLS_Toolbox manual includes an introduction to MATLAB and to linear algebra. A 
greatly expanded chemometrics tutorialnow covers PCA, MCR, GRAM, TLD, 
PARAFAC, the linear regression methods PCR, PLS, RR and CR, the classification 
methods K-Nearest Neighbors, SIMCA, and PLS-DA, instrument standardization, 
variable selection, and preprocessing tools. This manual also includes a reference section 
that gives a brief description of all the functions in the toolbox and their input/output 
(I/O) syntax. Only brief descriptions of the algorithms used are given here. For more 
information, the user is encouraged to consult the references listed in the bibliography. 
For quick reference, the I/O format of each function can be obtained at the command line 
by typing the function name, e.g., auto, or for commands that generate interfaces, the 
function name followed by io, e.g., pls io. This information is also listed in the 
PLS_Toolbox Reference Manual. Experienced MATLAB users may find that they want 
to customize the routines for their particular applications. This is encouraged and we 
would like to hear about your successes. 

In this manual all scripts that are input or output from MATLAB are in Monaco font, 
including all function and variable names and any output from the routines. Any optional 
inputs to the routines are in italics, such as optinput. In addition, all functions are 
denoted by apostrophes, such as ‘function’. MATLAB windows are referred to in bold, 
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e.g., Command Window. Menu options are also called out in bold, with slashes 
indicating the choices in cascading windows, e.g., File/New/M-File. Buttons on 
interfaces are in bold Geneva font.  

About MATLAB 

MATLAB, an acronym for MATrix LABoratory, is a product of The MathWorks, Inc., of 
Natick, MA. It is a computational environment especially suited to problems in matrix 
algebra, allowing the user to do matrix computations using a command language that 
looks very much like standard linear algebra notation. MATLAB, which is required to 
run the toolbox routines, is not an inexpensive package (as you probably already know). 
However, because of its large collection of built-in functions, easy to learn language and 
flexible environment, it is a great value. Another positive aspect of MATLAB is that it is 
available for many platforms, including Windows, Unix, Linux and Mac OS X. Thus, 
PLS_Toolbox can be run on any of these platforms, as can any other user defined 
functions.  

The inexperienced MATLAB user will probably want to become familiar with the 
MATLAB package before attempting to use PLS_Toolbox. We have provided a chapter 
in this manual that introduces the basic features of MATLAB required to run 
PLS_Toolbox. We also suggest reading the Getting Started with MATLAB guide that 
comes with MATLAB. While much of this guide covers material beyond what a 
PLS_Toolbox user requires, being knowledgeable about MATLAB will help improve the 
overall usefulness of PLS_Toolbox.  

MATLAB can be used in the command mode, where single line commands are entered at 
the prompt, executed immediately, and the results displayed. In this mode all commands 
act on the base or local workspace. Sequences of commands can be automated in two 
ways: as script files and as function files. Script files act as sequences of commands, and 
as such, operate on the MATLAB base workspace. This means that variables can be 
added or deleted from the workspace when using a script file. PLS_Toolbox routines 
(with the exception of the demos), however, are function files. Arguments are passed 
between a MATLAB function workspace and the base workspace much like function 
subprograms are used in FORTRAN or other lower level languages. Thus, the only 
changes that occur in the base workspace when using a function are those specified in the 
I/O statement of the function. In this sense, functions are “safer” than script files because 
you always know exactly what they will do to the workspace. 

The user can obtain help on any of the functions in PLS_Toolbox simply by typing help 
functionname at the MATLAB prompt. A brief message will be printed to the screen 
that contains information about the function and gives its I/O format. Short help, which 
includes only the I/O format, can be obtained by typing just functionname at the prompt 
for functions that do not have a GUI interface. The MATLAB ‘lookfor’ command can 
be used to find routines in PLS_Toolbox that perform specific functions. In addition, the 
‘helppls’ function, (executed by typing helppls at the command line), opens the 
MATLAB Help Browser with a list of PLS_Toolbox help topics. 
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We have written all the functions in PLS_Toolbox 4.0 so that they use only the functions 
in the “kernel” of MATLAB versions 6.5 through 7.2 (R2006a). None of the functions in 
this package require any functions from other MATLAB Toolboxes, (though in some 
instances they will call functions from other toolboxes if they are found). Thus, it is 
possible to use PLS_Toolbox without any of the other MATLAB Toolboxes. There are 
several of these Toolboxes that the user may find helpful, however. We have used the 
System Identification, Signal Processing, Optimization, and Control Toolboxes 
extensively and have found them to be very useful. (These toolboxes are available 
through The MathWorks.) They provide many tools that are complementary to those in 
PLS_Toolbox. 

Installing PLS_Toolbox 

PLS_Toolbox 4.0 should be installed as a standalone toolbox and not as an upgrade to an 
existing toolbox. PLS_Toolbox is delivered as a Windows Installer (.exe for Windows 
only) or as a compressed ZIP file (all platforms). Installation is a two-part process of 
copying and decompressing files into a local folder and then adding those files to your 
MATLAB path. You will need your License Code (obtained at the time of purchase). 

System Requirements 

MATLAB 6.5 or greater. 

20 MB of disk space. 

Using the PLS_Toolbox Windows Installer 

It is recommended that Windows users use the PLS_Toolbox Windows Installer. 
Copy the .exe file to your Desktop (or other suitable local location). Then double 
click the icon and follow the instructions. Be sure to verify the location of the 
installation folder; by default it will be the "toolbox" folder of your current MATLAB 
installation. When the Installer has completed, it will prompt you to start MATLAB 
and run an install script. If MATLAB doesn't start see Step 2 below. 
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Manually Installing PLS_Toolbox from ZIP File 

STEP 1) FILE EXTRACTION. 

Decompress the PLS_Toolbox ZIP file and move it to the MATLAB "toolbox" 
folder (e.g. C:\Program Files\MATLAB\R2006a\toolbox).  

Note: For those who already have a version of PLS_Toolbox installed, be sure 
the folders do not have the same name (by default they should not). Rename 
your existing copy of PLS_Toolbox if necessary.  

STEP 2) RUN EVRIINSTALL 

For MATLAB to find PLS_Toolbox, the directories that contain the toolbox 
files must be added to the MATLAB search path (except the @DATASET 
folder). (Note that if you are familiar with installing toolboxes purchased from 
The MathWorks, this process is slightly different. TMW installers typically are 
able to set the path automatically.) Start MATLAB and follow these steps: 

a) Start MATLAB and use the Current Directory toolbar to navigate to the 
PLS_Toolbox directory created in Step One. 

 b) Once PLS_Toolbox is the current directory type evriinstall at  
  the command line (in the COMMAND WINDOW): 
 

>> evriinstall 
 

 
Figure 1-1. Installation Guide 

 
A small dialog box will appear. Change the settings as needed then click the 
Install button. EVRIINSTALL will add the PLS_TOOLBOX to the path, check 
for any installation problems, and output results to the command window. 
c) Near the end of the installation you will be prompted for your License Code. 
Simply copy and paste the code into the dialog box, click "OK", and the 
installation will complete. 
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Figure 1-2. License Code dialog box. 

If the installation was successful but PLS_Toolbox functions are still 
unavailable, it may be necessary to force MATLAB to re-index the available 
functions by typing rehash toolboxcache at the command line. If the 
installation occurs but functions do not seem to be working properly, try typing 
evridebug at the command line. This utility will attempt to identify any 
installation problems and output the results to the command line. If the problem 
still persists, contact helpdesk@eigenvector.com. 

STEP 3) GETTING STARTED AND HELP 

Type helppls at the command line to open the MATLAB help browser to a list 
of PLS_Toolbox help topics. See Chapter 2 for a tutorial on loading data 
(section 2.1) as well as a “quick start” tutorial (section 2.2) on PCA and PLS. 

Upgrading from Previous Versions  

PLS_Toolbox 4.0 is compatible with PLS_Toolbox 3.x to the largest extent possible; 
however, incompatibilities may exist due to changes in input/output syntax of some 
functions. An effort has been made to support version 2.0 I/O syntaxes even in cases 
where this is no longer the preferred syntax. Some routines have entirely disappeared, 
though in most cases their functionality has been incorporated into new routines. It is 
recommended that you keep the previous version of PLS_Toolbox but remove it from 
your MATLAB path (type help path at the MATLAB prompt for more information). 

Registering Your Copy of PLS_Toolbox 

At the time of purchase you should have received a user name, password and License 
Code as well as instructions on how to download and install PLS_Toolbox (purchasers of 
older versions should have received this information by registering their software). Please 
try to keep your information up-to-date via our website so we can notify you when newer 
versions of PLS_Toolbox are available. Updates and patches are routinely issued when 
newer versions of MATLAB are released. 

User Support and Bug Reports 

Support questions should be directed towards helpdesk@eigenvector.com or by fax to 
(509) 662-9214. We can generally solve problems via e-mail within several hours and 
make every effort to provide a solution within 24 hours; faxed responses may take a little 
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longer. We also encourage you to visit the FAQ section of our website 
(www.software.eigenvector.com/faq). We do not offer phone support for PLS_Toolbox.   

There are several things that you can do to help us help you. If you encounter an error 
while using PLS_Toolbox, please copy the relevant text of your MATLAB session into 
an e-mail or fax. Please provide the dimensions of the input variables and any 
information that you can about their structure. Also, please include version information 
about your installation of MATLAB, PLS_Toolbox and any other toolboxes that you 
have installed. This can be done by typing plsver at the command line in MATLAB and 
pasting the contents of the list box into your bug report. It is particularly useful if you can 
reproduce the error using one of the data sets included with the toolbox. When using the 
graphical interfaces, please note the exact sequence of button clicks and menu selections. 
When in the Analysis interface, version information can be obtained from the 
Help/About PLS_Toolbox menu item. In general, we will try to recreate the error, and 
any information about how it came about will aid us greatly. Information on submitting 
bug reports can also be found in the ‘helppls’ window under Getting Started and 
Help / Error and Bug Reports. 

Future Upgrades and Bug Fixes 

The most up-to-date version of PLS_Toolbox will be kept available to users on our web 
site, www.eigenvector.com. Registered users can download new copies of the toolbox 
that incorporate the latest bug fixes. A username and password is required for access to 
the upgrades. Usernames and passwords are supplied when copies of PLS_Toolbox are 
purchased (older version users should have received this information by registering their 
software). If you have forgotten your username and/or password, please write to 
helpdesk@eigenvector.com. 

To check for updates use the following function at the command line: 
 
>> evriupdate 

This will bring up a small dialog box indicating the status of your installed products.  

How to Use This Manual 

This manual was written to serve the needs of MATLAB novices and experienced 
PLS_Toolbox users, as well as those completely new to the field of chemometrics. Not 
all chapters will be equally useful to all users. Use the following table to determine which 
chapters of the PLS_Toolbox manual will get you off to the best start.  
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Table 1-1. Suggested Study Guide 

If you: Then do the following: 

Are new to MATLAB Read Chapter 2, Getting Started 

Are new to, or rusty with, Linear Algebra Read Chapter 3, Introduction to Linear 
Algebra 

Are new to the field of Chemometrics Read Chapter 4-12 

Are a knowledgeable chemometrician, but 
new to PLS_Toolbox 

Read Chapters 2, follow examples in 
Chapters 4-12 as needed, and skim chapter 
16. 

A returning PLS_Toolbox user  Read Chapter 15, skim other chapters for 
specific information 

Want to learn more about the Distribution 
Fitting Tool Set 

Read Chapter 14, see the PLS_Toolbox 
Reference Manual sections for DFT 

Want to learn more about Robust methods 
and the LIBRA Toolbox 

Read Chapter 13 

Need more information about Preprocessing Read Chapter 7 
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2. Getting Started with MATLAB and 
PLS_Toolbox 
PLS_Toolbox can be used in many different ways. One can work either from 
PLS_Toolbox graphical user interfaces (GUIs) or from the MATLAB development 
environment, or both. 

We'll begin this chapter by showing a simple demonstration of loading an Excel file into 
MATLAB and exploring it from the command line. The next section will cover, in detail, 
the PLS_Toolbox GUI environment. The final section of this chapter is a "quick start" 
guide on using PLS_Toolbox GUIs; we'll show how to quickly build a principal 
components analysis (PCA) model and a partial least squares (PLS) model.  

Working with MATLAB 

About MATLAB 

MATLAB, an acronym for MATrix LABoratory, is a product of The MathWorks, Inc., 
(Natick, MA). MATLAB is built around the LAPACK and BLAS linear algebra engines. 
It is a computational environment especially suited to problems in matrix algebra, 
allowing the user to do matrix computations in a command language that looks very 
much like standard linear algebra notation. MATLAB, which is required to run the 
toolbox routines, is not an inexpensive package (as you probably already know). 
However, because of its large collection of built-in functions, powerful graphics, easy-to-
learn language, extensibility, and flexible environment, it is a great value. Another 
positive aspect of MATLAB is that it is available for many platforms, including Mac OS 
X, Microsoft Windows, Unix, and Linux. Thus, PLS_Toolbox can be run on all these 
platforms.  

MATLAB can be used in the "command line" mode, where single line commands are 
entered at the command prompt (>>), executed immediately, and the results displayed. 
MATLAB contains hundreds of commands; a complete description of MATLAB 
commands is contained in the manuals provided with the software and through onscreen 
help.  

We have continued to expand our use of GUIs (Graphical User Interfaces) with 
PLS_Toolbox. Version 4.0 has integrated GUIs into eleven of our most popular 
chemometric routines. The updated GUIs include a more sophisticated layout allowing 
quick access to tools and information, including contextual menus, short cuts, and 
integrated help.  

Before entering the GUI environment the user must first enter and navigate the command 
mode. Thus, some minimal understanding of the command mode is required even of the 
beginner. Although a good number of powerful methods are available through our GUIs, 
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there are still several routines only accessible from the command line. It is the intention 
of this section to get the new MATLAB user sufficiently comfortable with the command 
line mode to load data, do simple manipulations of data, execute PLS_Toolbox GUI 
routines, and finally save data and models to permanent media. 

Startup 

After starting MATLAB from the Desktop, the default three-part window will appear as 
shown in Figure 2-1. Clicking the Start button in the lower left-hand corner will display 
a list of MATLAB tools, shortcuts, and documentation. Mousing over the top item, 
MATLAB, will display a submenu that should have PLS_Toolbox listed at or near the 
bottom. Should it not be found, please install PLS_Toolbox as described in Chapter 1, 
Installing PLS_Toolbox. 

 

Figure 2.1. Default MATLAB desktop at startup. 

Command Window 

The heart of MATLAB is the Command Window. It is where commands can be directly 
entered by typing them followed by a return. The >> prompt shows that the Command 
Window is ready for entering a command.  
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Together, MATLAB and PLS_Toolbox contain hundreds of commands in the form of 
scripts and functions. A script is simply a series of commands that are executed when 
the command is called. A function is similar to a script except that arguments are passed 
to it when it is called and it returns other arguments calculated by the function. A script 
runs in the base Workspace and does not return value. Once a script or function has been 
defined, it can be called from the command window or by other functions or scripts. 

One of the most useful commands for a beginner is demo. (Note that MATLAB is case 
sensitive and the commands Demo, DEMO and demO would be interpreted by MATLAB as 
different (and most likely undefined) commands.) If the user types demo in the 
Command Window (followed by a return), the MATLAB help browser will appear at 
the Getting Started with Demos page. It is well worth the time for a new user to explore 
both MATLAB and PLS_Toolbox demonstrations. 

Another useful command is the help command. It is executed by typing help followed 
by the name of the command. For example, type help demo to see instructions on using 
the demo command. The demo command requires that you remember the exact name of 
the command. If you cannot remember the command name, then use the lookfor 
command followed by a key word. For example, lookfor demonstration will cause 
MATLAB to search for all commands that use the word demonstration in the first line of 
their help file. 

 

Figure 2-2. MATLAB demos window. 
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Finally, provided the Documentation files have been loaded into the computer when 
MATLAB was installed, detailed help may be obtained using the Help menu choice in 
the top MATLAB command bar. 

A record of executed commands can be viewed by scrolling up the Command Window 
or by examining the Command History window.  

Entering Data 

Before MATLAB can do calculations, it needs data to work on. Typing the following 
command: 

» A=[2 5 3 6 
7 3 2 1 
5 2 0 3] 

defines the variable A equal to the matrix enclosed within the square brackets. The spaces 
between the numbers delineate the columns and each return starts a new row. The same 
results are obtained if we use the command: 

» A=[2 5 3 6; 7 3 2 1; 5 2 0 3] 

where the returns have been replaced by semicolons. Either way MATLAB will respond 
by typing the resulting matrix: 

A = 
 
   2   5   3   6 
   7   3   2   1 
   5   2   0   3 

If you do not wish to see MATLAB echo (print out) the result, end the command with a 
semicolon. For example, if you type: 

» A=[2 5 3 6; 7 3 2 1; 5 2 0 3]; 

the variable A will be defined as before, but MATLAB will not echo the result. When 
working with very large matrices, the use of the semicolon can prevent thousands of 
elements from being printed on the screen.  
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Table 2-1. Properties of a number of beers. 

Typing in data by hand can become very tedious for large data sets. MATLAB can read a 
variety of files from other major programs that store data. For example, we may wish to 
load an Excel file (included as demonstration data with PLS_Toolbox and shown in 
Table 2-1) containing data for six brands of beer and eleven properties for each beer 
(Analytical data courtesy The Gambrinus Company, San Antonio, TX).  

These data can be found in the file Redbeerdata.xls in the PLS_Toolbox/dems directory. 
Note: PLS_Toolbox includes several functions for reading .xls and other data files 
directly into the DataSet Object format typically used with its functions (see, for 
example, xlsreadr). However, here we will use only the built-in MATLAB-based 
functions in order to more fully explore MATLAB commands. Redbeerdata.xls may be 
loaded into MATLAB by first selecting the File/Import Data... menu from the 
Command Window. Once the appropriate file has been found and chosen in the Import 
window, the data Import Wizard will present the window shown in Figure 2-3. 

 Specific 
Gravity 

App 
Extr 

Alcohol  
(%w/w) 

Real 
Ext  O.G. RDF Calories pH Color IBU  VDK 

(ppm) 

Shea's 
Irish 1.01016 2.60 3.64 4.29 11.37 63.70 150.10 4.01 19.0 16.1 0.02 

Iron 
Range 1.01041 2.66 3.81 4.42 11.82 64.00 156.30 4.33 11.6 21.1 0.04 

Bob's 1st 
Ale 1.01768 4.50 3.17 5.89 12.04 52.70 162.70 3.93 30.7 21.1 0.11 

Manns 
Original 1.00997 2.55 2.11 3.58 7.77 54.90 102.20 4.05 58.9 18.2 0.05 

Killarney's 
Red 1.01915 4.87 3.83 6.64 14.0 54.30 190.20 4.36 12.3 17.9 0.02 

Killian's 
Irish 1.01071 2.74 3.88 4.48 12.0 64.10 158.80 4.28 53.0 14.2 0.03 
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Figure 2-3. MATLAB Import Wizard window with data highlighted. 

Figure 2-4. MATLAB Import Wizard window with textdata highlighted. 
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The Import Wizard has divided the data into a numerical data matrix (data) and a text 
data matrix (textdata). Notice that the matrix data is a 6 x 11 matrix of numbers in this 
case. (Matrix notation always refers to rows first followed by the columns.) The variable 
textdata is an 8 x 12 matrix of text cells. Highlight the variable data and one can 
examine the first 10 x 10 part of the matrix to make sure that MATLAB has properly 
delineated the numerical data. Highlighting the variable textdata, as shown in the figure 
above, allows the user to see that it is made of text cells from the column and row labels, 
and that the numerical data have been removed, leaving blank cells. 

Clicking on the Finish button will complete the loading of the data into MATLAB. 

Examining the MATLAB Workspace 

We can examine MATLAB’s data memory or Workspace by typing whos at the prompt. 

» whos 
 
 Name        Size     Bytes  Class 
 
 data        6x11       528  double array 
 textdata    8x12      6226  cell array 
 
Grand total is 395 elements using 6226 bytes 

If you prefer, the Workspace can be examined by choosing Workspace in the View 
menu. A Workspace window will appear. 

When we examine the Workspace after loading the data we see that the matrix, data, is a 
6 x 11 matrix of double precision numbers or double array. Typing the name of one of 
the matrices will cause MATLAB to list the matrix to the screen. For instance, typing 
data at the command prompt produces: 

» data 
 
data = 
 
 Columns 1 through 7  
 
  1.0102  2.6000  3.6400  4.2900  11.3700  63.7000 150.1000 
  1.0104  2.6600  3.8100  4.4200  11.8200  64.0000 156.3000 
  1.0177  4.5000  3.1700  5.8900  12.0400  52.7000 162.7000 
  1.0100  2.5500  2.1100  3.5800   7.7700  54.9000 102.2000 
  1.0192  4.8700  3.8300  6.6400  13.9800  54.3000 190.2000 
  1.0107  2.7400  3.8800  4.4800  11.9900  64.1000 158.8000 
 
 Columns 8 through 11  
 
  4.0100  19.0000  16.1000  0.0200 
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  4.3300  11.6000  21.1000  0.0400 
  3.9300  30.7000  21.1000  0.1100 
  4.0500  58.9000  18.2000  0.0500 
  4.3600  12.3000  17.9000  0.0200 
  4.2800  53.0000  14.2000  0.0300 

We can examine just one element of the matrix by indicating the row number, followed 
by the column number; for example, if we wish to examine the number in the third row 
and second column we would type: 

» data(3,2) 
 
ans = 
 
  4.5000 

Notice that the answer to our request has been assigned to a temporary variable called 
ans. 

We can similarly examine the complete second row by typing: 

» data(2,:) 
 
ans = 
 
 Columns 1 through 7  
 
  1.0104  2.6600  3.8100  4.4200  11.8200  64.0000 156.3000 
 
 Columns 8 through 11  
 
  4.3300  11.6000  21.1000  0.0400 

where the colon represents all the columns. 

As we saw in the import wizard, the text data are made up of an 8 x 12 matrix of cells 
containing our sample and variable labels and several empty cells where the numbers had 
been. This can be seen by typing the matrix name, textdata. Cell arrays are a handy way 
to store different length matrices as is often the case when dealing with text. Notice that 
the sample labels are located in rows 3 though 8 of the first column. We can define a new 
vector, also a cell array, containing our sample names by typing: 

» SampleLabels=textdata(3:8,1) 
 
SampleLabels =  
 
  'Michael Shea's Irish Amber' 
  'Iron Range Amber Lager' 
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  'Bob's 1st Ale' 
  'Manns Original Brown Ale' 
  'Killarney's Red Lager' 
  'George Killian's Irish Red'  

where (3:8,1) is read as rows 3 through 8 inclusive and only column 1. Since the 
SampleLabels matrix is only 8 rows long, we could have also typed  

» SampleLabels=textdata(3:end,1); 

where end indicates the last row (and the semicolon was used to suppress the screen 
echo). 

We can similarly define a matrix of variable labels by isolating row 1, columns 2 through 
12 by typing: 

» VariableLabels=textdata(1,2:end) 
 
VariableLabels =  
 
 Columns 1 through 3 
 
  'Specific Gravity'  'Apparent Extract'  'Alcohol (%w/w)' 
 
 Columns 4 through 9 
 
  'Real Extract (%w/w)'  'O.G.'  'RDF'  'Calories'  'pH'  'Color' 
 
 Columns 10 through 11 
 
  'IBU**'  ' VDK*** (ppm)' 

Type whos to see how we have done. Fortunately, these labels are in a form (cell array of 
stirngs) where the PLS_Toolbox GUIs can read them directly.  

Saving your work 

We have done a great deal of work, so it would be a good idea to save our data to disk. 
Before we save the data, there may be some variables that we would like to remove, for 
example the variable ans. Perhaps the most dangerous command in MATLAB is the 
‘clear’ command. The command clear ans will remove only the variable ans. 
However, when clear is not followed by the names of any variables to be removed, it 
will remove all the variables in MATLAB memory! To save the remaining variables 
choose File/Save Workspace as… from the Command Window and give your data a 
name such as Beerdata. The resulting file will be a MATLAB data file with the .mat file 
extension. At some later date, when you wish to reload these data, you may use the 
Import Data… choice in the File menu as before. 
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Note:  For those who prefer not to let their finger leave the keyboard, you may use the 
commands ‘load’ and ‘save’ to load and save data respectively. Just type help load 
or help save for specific instructions in using these commands. The ‘save’ command 
has several advantages in that it allows all or just the specified matrices to be saved and 
can save the data in several formats such as ASCII. The main disadvantage is that it will 
save the data in the current directory. You may determine the current directory and its 
content by using the command ‘what’. Use ‘cd’ to change the current directory (or use 
the full path name of where the files should be saved). 

The PLS_Toolbox GUI Environment 

Most of the higher-level data analysis tools can be accessed through Graphical User 
Interfaces (GUIs) in PLS_Toolbox. In many cases a GUI can make data analysis faster 
and easier to perform and interpret than using the command line analogs.  

PLS_Toolbox is organized around 4 main GUI tools (Figure 2-5). Each tool is dedicated 
to a specific step in the data analysis process. 

1) The Browse GUI is the PLS_Toolbox "desktop" environment. Here one has access to 
all loaded data, available analysis methods, the DataSet Editor, and other top level tools. 
With its "drag and drop" functionality, a user can quickly begin a number of data analysis 
tasks. 

2) The DataSet Editor is the primary data-handling GUI in PLS_Toolbox. It provides a 
variety of functions and tools for loading, editing, and saving data. As its name suggests, 
the object used in PLS_Toolbox for managing data is the DataSet Object (see chapter 16 
for more information).  

3) The Analysis GUI is the core interface with PLS_Toolbox data modeling and 
exploration functions. This is where you will create and explore your models. 

4) The PlotGUI interface is the principal data visualization tool for PLS_Toolbox. It 
provides a vast number of tools for labeling, manipulating, and publishing plots generated 
using PLS_Toolbox.  
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Figure 2-5. GUI diagram. 

 

Browse 

 

Figure 2-6. PLS_Toolbox Browser. 
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The Browser window (Figure 2-6) shows icons for tools and objects in the PLS_Toolbox 
workspace. Each analysis icon opens its respective interface in the named mode (e.g., 
Decompose will open the Analysis window with PCA already selected). The browse 
environment is "drag and drop" enabled so you can click on a DataSet icon, drag it over 
an analysis icon, and release the click to start the analysis. This will open the Analysis 
window with the method pre-selected and load the data. Likewise, you can drag an 
existing data or model icon from the browse window over to an Analysis window and 
"drop" the data /model into an ongoing analysis. 

Although the FigBrowser utility can help you manage figures (see below), you can also 
set the Browser to display figures using setplspref (see setplspref  and 
getplspref in the manual for more information) from the command line using the 
following command: 

>> setplspref('browse', 'viewfigures', 'true') 

Once you’ve set the preferences, you’ll have to restart the Browser for the new 
preferences to take affect.  

FigBrowser 

As you work through an analysis you often can generate lots of figures. To help manage 
and view those figures, there is a utility called FigBrowser (Figure 2-7). It creates a 
thumbnail image of each open figure/window and displays it (Figure 2-8).  

 

Figure 2-7. FigBrowser Menu; selecting Figure Thumbnails will open FigBrowser. 
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Figure 2-8. Figure Browser. 

Clicking on a particular figure thumbnail will bring it to the front, make it the "current 
figure" in MATLAB, and then close the thumbnail window. 

 

Analysis 

The Analysis application provides a common interface for several popular PLS_Toolbox 
functions, including: 
 
PCA Purity PARAFAC PLS PLSDA MPCA 
MCR Cluster PCR SIMCA MLR  

The interface allows the flexibility to switch between analysis methods (for a given type 
of data) and will help you manage your developed models. There are various useful tools 
integrated into the application that will be described below. 

The Analysis interface can be started from Browse or from the command line using the 
generic command.  

>> analysis 
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It can also be started with a default analysis method selected by typing the PLS_Toolbox 
command for the specific analysis of interest without any input arguments. For example, 
the command below starts the analysis interface preset to the MCR analysis method. 

>> mcr 

Main Figure 

The main Analysis window (Figure 2-9) has a layout with four basic areas. The menu 
items allow access to common I/O functionality, data manipulation, and analysis set-up. 
The Toolbar contains buttons specific to a particular analysis method. The status 
windows show information for the currently loaded data and model. For analysis methods 
that generate statistics, the SSQ window will display statistics and allow you to 
manipulate the number of components or factors to be modeled. At the bottom of the 
figure is a Help Window that displays suggestions for the next step of an analysis. It is 
meant as a guide for novice users and can be turned off by right-clicking on the window. 
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Figure 2-9. Main Analysis window. 

Some menu items are available at all times, others will be disabled depending on the 
loaded data and model type. Notice that when no DataSet Object or model is loaded, all 
items except for loading functions are disabled in the menus (see next figure). As you 
load data and create models you’ll find appropriate menu items enabled or disabled. 

Menu Items - File 

The File menu (Figure 2-10) contains functionality to load, save and clear data and 
models. Saving and loading occur through a common interface (see the next section). In 
general, items dealing with data will allow you to access either the X- or Y-block. The 
use of the X- and Y-blocks depends on the analysis method selected; some analysis 
methods do not use the Y-block. In all cases, the number of rows (samples) in the Y-
block must match the number of rows (samples) in the X-block. Use Load Data to load 



 24 

MATLAB-formatted variables from .mat files or the MATLAB workspace. If you choose 
Load Data/Both, you’ll be prompted to load a Y-block after loading an X-block. Import 
Data will load data from sources outside the MATLAB environment, such as 
ThermoGalactic .spc, Microsoft Excel, or .txt files. New Data is used to create a DataSet 
Object of given size and initial value (e.g., random values (rand), NaN, 0). Note that 
PLS_Toolbox and MATLAB also supply several different command line tools for 
importing and manipulating data. Often it can be useful to import data from the command 
line then load it into Analysis using the standard Load Data menu.  

Several types of analyses use "options" to provide additional optional inputs to a 
function. These options are stored in structure arrays and can be loaded and saved 
similarly to models. They can also be edited via the Edit menu (see next section). See the 
documentation for the individual analysis method for more information on specific 
options. 

 

 

Figure 2-10. File menu.  

The Save Data menu option saves data as a DataSet Object and saves Models and 
Predictions as MATLAB Structures (see the appendix entries for each of the items in the 
PLS_Toolbox manual for more information). When you Clear a model, all of the plots 
associated with that model are closed automatically. Likewise, if you clear data (X-block 
or Y-block) all plots associated with them will close. If data are overwritten, all open 
plots will be updated.  
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Once a model has been calculated, most analysis methods allow you to load new data to 
which you may then apply an existing model (i.e., make a prediction using the model). 
Be aware that if you load new data to be applied to an existing model, the size of the new 
data must be the same as that of the old data or you will receive an error.  

Once a model has been calculated, if the calibration data are cleared (or overwritten by 
loading new data), the model can no longer be modified. The same is true for a model 
which has been loaded from a file or the MATLAB workspace. To make any changes, 
you must create a new model by using the File/Clear/Model menu option. 

Load and Save operations use a common interface that allows loading from either the 
MATLAB workspace or MATLAB-formatted (.mat) files. You can use the interface to 
switch between workspace and file modes using the button located in the lower left 
corner. The Workspace view allows you to save or load directly to/from the current 
MATLAB Workspace. The File view allows you to save or load directly to/from a .mat 
file.  

In File view (Figure 2-11), the controls at the top of the window allow for standard folder 
navigation. The two list boxes, Files and Variables, show, respectively, the available files 
in the currently selected folder and the available variables in the currently selected file. 
Note that a .mat file can contain several variables and you can select one or more from 
the Variables list to load. When saving to a .mat file you must name both the file and the 
variable (i.e., both the File and Variable text boxes must have values in them). Also 
notice that in the Files list a name preceded with “[ ]” indicates a folder. To navigate into 
any folder, either double-click the folder name in the listbox or select it and click the 
Open button. 

 

Figure 2-11. Load dialog box. 
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Menu Items - Edit 

The Edit menu of the Analysis window (Figure 2-12) provides tools for viewing and 
manipulating loaded data. The X-block Data and Y-block Data options open the specific 
DataSet Object in a DataSet Editor. Selecting Plot X-block or Plot Y-block will open 
the DataSet Object with PlotGUI and display plots of general statistics and allow plotting 
of subsets of the data (see the DataSet Editor and PlotGUI sections later in this chapter 
for more information).  

Select Y-Columns is used when the Y-block contains multiple columns. A list of 
available columns is presented from which you can choose which of the Y-block columns 
to use in the analysis. The top two selections from the Options submenu will open the 
Options GUI and allow you to adjust settings the current analysis or for the Analysis GUI 
itself. The Preferences selection will open a GUI for adjusting application "preferences" 
to override default options (set within a function). Users should be extremely careful if 
using the Preferences GUI, changes to a function's preferences will be persistent (even if 
MATLAB is exited) and no warnings will be shown. 

 

Figure 2-12. Edit menu. 

Options GUI 

Options provide additional optional inputs to a function. The inputs are stored in a 
MATLAB structure array and can be loaded, edited, and saved from the Analysis 
interface. The Options GUI is an interface into the Options structure.  
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Figure 2-13. Options GUI window for MCR. 

Within the Options GUI you have several ways to narrow down the options available for 
editing. The User Level menu will make available only the options that a particular type 
of user needs. If set to "advanced," all available options will be displayed. The Options 
Categories buttons display logical subsets of options to make it easier to view and 
modify options of interest. Substructures will also appear as buttons in the Options 
Categories list. 

To change an option click on the appropriate box or pulldown menu in the Value list and 
enter or select the value you wish. Look at the Description box for a brief explanation of 
the options. If the box is pink, the explanation is longer than can fit in the box. Clicking 
on the box will display the complete contents in the scrollable Description area above the 
list. 

Menu Items - Preprocess 

The Preprocess menu (Figure 2-14) allows setting and viewing of preprocessing options. 
Each block has a submenu for setting common preprocessing methods directly or for 
accessing the Custom Preprocessing figure. After making a change to preprocessing, 
you will usually be required to recalculate the model (by clicking the Calc button). View 
Preprocessed Data displays the effects of the selected preprocessing on loaded data. The 
plot(s) are automatically updated to reflect any changes in preprocessing. 
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Figure 2-14. Preprocess menu. 
 

 

Figure 2-15. Custom Preprocessing window. 

The Custom Preprocessing window (Figure 2-15) allows you to choose from a list of 
available preprocessing methods. After selecting a method from the available methods 
list, pressing the Add button will insert the selected method into the Selected Methods 
list on the right. Some methods will display an additional window for method specific 
settings when the item is added to the Selected Methods list. These settings can also be 
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modified by selecting the method in the Selected Methods window, then pressing the 
Settings… button.  

The Selected Methods are order specific – that is, they get applied in order from top to 
bottom. The order of preprocessing can have a very significant effect on an analysis; this 
should be carefully considered in the development of a model. 

Note that n-way data have different preprocessing methods than 2-way data, and care 
should be taken when switching between 2-way and n-way data. Again, you must 
recalculate the model after making any changes to preprocessing. You may close the 
preprocessing window (using the “X” button in the upper right corner of the figure) at 
any time; its settings are automatically saved after each addition. 

You can load and save preprocessing settings from/to the MATLAB workspace and .mat 
files using the Custom Preprocessing window's Load button. 

The Show button will display two plots side by side with the raw data on the left and the 
preprocessed data on the right (Figure 2-16). You can select the axis values using the 
drop-down menus and toggle the Excluded button to show excluded data. 
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Figure 2-16. Preprocessing GUI with Show clicked. 
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Menu Items - Analysis 

The Analysis menu (Figure 2-17) displays a list of data analysis methods available in the 
interface. Only those methods that are valid for the currently loaded data will be enabled 
(e.g., in the figure below, the wine demo DataSet Object is loaded and only five 
methods are available). Switching methods will cause any currently developed model to 
be cleared. If the model is unsaved you will be prompted to save the current model.  

The methods available at any time depends on the number of data blocks loaded, the 
dimensionality of the data (2-way vs. n-way), and additional details in the DataSet 
Object. Methods that require both an X and a Y block (e.g., PLS, PCR, …) will only be 
available if both blocks are loaded. Methods that require only an X-block are available if 
both X- and Y-blocks are loaded; however, they will only operate on the loaded X-block 
while ignoring the Y-block. SIMCA requires that the X-block contain classes for the 
samples (see the section on the DataSet Editor later in this chapter, and Chapter 16 for 
more information on DataSet Objects). PLSDA requires either classes for the X-block 
samples or a Y-block containing class assignments. 

 

Figure 2-17. Analysis menu. 

 

Menu Items - Tools 

The Tools menu (Figure 2-18) shows utilities available for DataSet Objects and Models. 
Cross-Validation displays an interface for selecting and configuring a cross-validation 
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method (see crossval in the reference manual for more information). Cross-Validation 
is not available for all methods. Show Model Details displays model statistics and 
information in a window from which the user can easily copy the information. 
Correlation Map will open a figure containing a map of correlated variables. If there are 
less than 20 variables, they will be sorted, with the most correlated variables next to each 
other (see crosscor in the reference manual for more information). Estimate Factor 
SNR estimates the number of significant factors in multivariate data. 

 

Figure 2-18. Tools menu. 

Menu Items - Help 

The Help menu (Figure 2-19) has several selections for PLS_Toolbox help and 
information. PLS_Toolbox Help is an interactive interface providing topic-specific 
assistance on PLS_Toolbox functions. The PLS_Toolbox Browser is a graphical 
interface for the Toolbox (see above; clicking the Eigenvector Research Lambda icon 
button on the toolbar will also open the Toolbox Browser). The Manual selections open 
various portions of this document. The Online selections will open your default browser 
to the EVRI homepage or FAQ page. About PLS_Toolbox provides version and 
installation information for MATLAB as well as PLS_Toolbox. 
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Figure 2-19. Help menu. 

The Toolbar 

The toolbar on the Analysis window (Figure 2-20) contains buttons to calculate and 
display models and data. The buttons available and their actions depend on the type of 
analysis method selected and individual buttons will be automatically enabled or disabled 
depending on the status of your analysis. For instance, when you first load data and 
choose an analysis, only the calculate button will be enabled. Holding the mouse cursor 
over the top of a particular button will display the Tooltip for that button. The 
Eigenvector Research Lambda icon button is always present in the toolbar and opens the 
PLS_Toolbox Browser. 

 

Figure 2-20. PCA, MCR, PLS and PCR toolbar with Calculate button tooltip. 
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Figure 2-21. Analysis interface with status windows populated 
(note right-click menu shown for model status window). 

Status Windows 

The status windows (Figure 2-21) show information on models and loaded data. Both 
windows are right- and left-click enabled. Left-clicking the Data Status Window will 
bring up the DataSet Editor with your current data (see the DataSet Editor section below 
for more information). Left-clicking the Model status window will display the Show 
Model Details window. Right-clicking either window will display a subset of the File 
and Edit menu items applicable to the window (see the Model Status Window right-click 
menu displayed above). If editing data in the DataSet editor, any changes made will be 
automatically updated in the loaded DataSet, but you will need to recalculate the model 
upon completion.  
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Figure 2-22. Analysis interface with SSQ table populated. 

SSQ Window 

The SSQ Window (Figure 2-22) interactively displays Variance Captured or other 
statistical information for models. The terminology and data displayed will change 
depending on the Analysis selected. To choose the number of components or factors for 
an Analysis you can click on the desired number in the Variance Captured Data Table 
(don’t forget to recalculate when needed).  

For some methods (e.g., MCR and PARAFAC), models are not "nested" – that is, when 
you add or remove components, the other components in the model are affected by the 
addition or removal (this is not true of PCA, PCR or PLS models, in which adding or 
removing a component has no effect on the other components). In these methods, the 
SSQ table behaves slightly differently. Instead of obtaining an entire table of variance 
captured for all components, even those not included in the model, the variance captured 
for only the included components is given. Models with more or fewer components can 
be investigated by clicking on the appropriate number of components and clicking 
Calculate. (In the rare event that you need to exceed the default maximum number of 
factors (20), the Number PCs/Components box is active (editable) and you may enter a 
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larger number manually). Note that once a model with a given number of components is 
calculated, it is "cached" so that it can be recalled faster should you want to return to that 
model later. These models are indicated in the table by the label "<View Model>". 
Clicking on any of these lines followed by Calculate will automatically recall that model. 

Describing the different analysis methods is beyond the scope of this chapter. For more 
information on the individual methods, please see Chapter 4. 

 

 

Figure 2-23. Analysis interface showing cached models for PARAFAC analysis. 

The DataSet Editor 

The DataSet Editor (DSE) (Figure 2-23) is an interface for editing the contents of a 
DataSet Object (see “Chapter 16: Advanced Software Information” for more technical 
information about DataSet Objects). Using the Editor can be easier and quicker than 
manipulating a DataSet Object from the command line. The demonstration below will 
run through some of the common functions of the DSE.  
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Start an empty DataSet Editorby using the MATLAB command below or by clicking the 
DataSet Editor icon in the Browser: 

>> editds 

Load the Wine DataSet Object using the Load command from the File menu. Navigate to 
the dems folder in your PLS_Toolbox folder to locate the Wine DataSet. (If you have 
already loaded a DataSet object into the MATLAB workspace, you can also double-click 
on the DataSet object in the MATLAB Workspace Browser to start the DSE and load the 
given DataSet object). 

The Load, Save, and Import functions in the File menu are similar to those in the 
Analysis interface, allowing you to load or import data from a variety of sources. The 
DSE also permits concatenation of data by loading new data with modes that  match one 
or more modes of the currently loaded data.  

After loading the Wine DataSet Object, your editor should look similar to Figure 2-24. 
The default tab displayed is Info. Here we can see general information about the DataSet 
Object including the author, its size, and date created.  

 

 

Figure 2-24. DataSet Editor default view. 

Fields with the Edit button near them can be edited by clicking the button, editing the 
contents of the field, and then clicking Accept (as opposed to Discard) (Figure 2-25). 
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Try changing the “B.” in the Author field to “Barry”. Notice an asterisk appeared next to 
Wine in the title bar of the figure after you clicked Accept. This indicates there is 
unsaved data, so don’t forget to Save your changes to a new DataSet Object via the File 
menu. Name your file and your variable “newwine”. Keep in mind that if you save the 
new DataSet to the MATLAB workspace it will be deleted when you exit MATLAB. To 
retain it, you must save it to a file from either the DataSet Editor or from the MATLAB 
workspace. 

Clicking the Plot button or selecting the View/Plot menu item will bring up a figure of 
the plotted data as well as a Plot Controls figure for manipulating the plot (see below for 
more information on Plot GUI). 

 

Figure 2-25. Editing a DataSet Object field. 

The Data Tab 

The Data tab (Figure 2-26) allows you to edit individual cells, include/exclude rows and 
columns, and to designate rows/columns as Axis Scales, Classes, or the Include field. 
For example, to exclude the Wine column, left-click the "Wine" column header, then 
right-click (Control-click on some systems) the same column header and select Exclude 
Selected from the menu. Applicable results (e.g., changes in the include field or "Use 
as") will be reflected in the Mode tab.  

The selections in the right-click menu can also be accessed via the Edit menu after 
selecting the column of interest. If more than one column or row is selected, the action 
will be performed on all selected columns and/or rows. 

Other options for the selected column include: 
• Extract Data to export the column(s) or row(s) to the workspace or a .mat file,  
• Copy to make a copy of the selected column(s) or row(s) on the system clipboard (to 

copy into other programs),  
• Paste to copy the contents of the clipboard into the selected column(s) or row(s), 
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• Fill with value changes all cells to value indicated, 
• Use as Axisscale / Class / Include which copies the column(s) or row(s) into one of 

the label fields of the DataSet (see below). 

 

 

Figure 2-26. The right-click menu for a data column. 

Mode Labels Tabs 

The Mode Labels tabs allow you to enter information associated with the different modes 
of the data. In a typical two-way DataSet Object, mode 1 (i.e., rows) is related to samples 
and mode 2 (i.e., columns) is related to variables. In the Mode Labels tabs, you can set 
axis scales, classes, labels and the include field for each mode. 

For example, after excluding the Wine column in the Data tab as described above, go to 
the Mode 2 Labels tab (Figure 2-27). You’ll notice the Incl. field checkbox next to the 
Wine label is not checked. This is because you have just excluded it. Including/Excluding 
fields can just as easily be accomplished using the check boxes in the Mode Labels tabs. 
You can also directly edit the values in any of the fields here.  

The DataSet Editor will allow you to load Labels, Axis Scales, and Classes from the 
Mode Label tabs directly from files or variables as long as the information being loaded 
is the correct size. This can be a useful tool when you have different data sources that use 
the same labels. Above we created a new Wine DataSet Object; now let’s clear and 
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reload the Mode 2 Labels. First, right-click the Label header and select Clear/Reset (or 
select Edit/Clear/Reset). Next, right-click the Label header again and select Load Label 
(or select File/Load Label). This will open the load dialog figure and allow you to 
navigate to a .mat file or choose a variable from the workspace. Locate the Wine.mat file 
in the dems folder and click Load. The DataSet Editor will automatically extract and load 
the Mode 2 Labels from the original DataSet Object.  

 

Figure 2-27. Mode 2 Label tab. 

When loading from a DataSet object, the same field from the same mode will always be 
used. To load from a different mode, you must first Extract or Copy the contents from 
the source DataSet object and Load or Paste them into the target DataSet object. Note 
that you can always load or paste from a non-DataSet object, even when that information 
was copied from an external program such as Microsoft Excel. 

From the Mode Label tabs you can also create multiple Sets of Labels, Axis Scales, and 
Classes. This can be useful if you find yourself needing to plot your data against two 
different axis scales; for instance, frequency and wavelength. To add an additional set, 
click on the set selection pull-down menu just below the column header buttons (This 
menu usually says "Set 1" as in Figure 2-27) and choose New Set… and finally confirm 
the creation of a new set. You can then enter values manually or select the column header 
button and Paste or Load all the values from the clipboard, workspace or file. 

Using the Edit selection from the right-click menu will display the contents of the entire 
column of Label / Axisscale / Class / Include field in a list box. This can provide quicker 
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way of making changes to these fields. Labels can be copied, manipulated in Excel, then 
pasted back into the list. 

The Bulk Include Change selection is also available from the menu. It allows a selection 
from a list box. You can use the shift and/or control keys while selecting an item in the 
box to make changes to the include field. 

Other DataSet Editor Features 

The DataSet Editor has many powerful data manipulation features. The Edit menu 
includes the following utilities: 

• Transpose a DataSet object will switch columns and rows – but only for 2-way 
DataSet objects. 

• Hard-Delete Excluded will permanently remove excluded data from a DataSet 
Object. 

• Exclude Excessive Missing will automatically exclude rows or columns (or multi-
dimensional indices) in which the number of missing data values (NaNs) exceeds the 
allowable amounts, as defined by the missing data replacement algorithm, 
'mdcheck'. This action can be used to remove samples or variables which are too 
sparse in information to be used in modeling. 

• Missing Data Map (from the View menu) will provide a color map of missing data 
points (NaNs) in the data matrix. Elements which are not missing are shown in green, 
elements which are missing but could be replaced with the standard missing data 
replacement algorithm ('mdcheck') are shown in yellow, and elements which are 
missing and cannot be replaced by the missing data replacement algorithm are shown 
in red. 

• Permute Modes will allow you to change the order of modes of the data.  

• Concatenate will give you the option to concatenate old and new data (if data are 
already loaded and new data are either Loaded or Imported through the DSE File 
menu). The old and new data are compared, and if they match in size in one or more 
modes,  you will be given the option to concatenate the old and new data. By this 
method, you can build a larger DataSet Object from several smaller datasets. 

In general, the DataSet Editor allows quick and easy access to the contents of a DataSet 
Object. It has been integrated into the Analysis interface (as shown earlier) so you can 
easily make changes to your data and recalculate your model without having to save and 
reload your data or go to the command line.  

Viewing and Modifying DataSets with PlotGUI  

The 'plotgui' function is also useful when working with DataSet objects. This utility 
provides a graphical view of a DataSet object and allows graphical manipulation of the 
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include and class fields. The 'plotgui' Plot Controls window can be invoked from 
the MATLAB command line by typing plotgui. It is also used by other PLS_Toolbox 
functions and can be accessed from any of a number of different interfaces including the 
workspace Browser.  

PlotGUI is configured to have a single small controls interface, Plot Controls, which 
contains all of the tools necessary to manipulate a particular plot. At any time there may 
be several plots (figures) open under "control" of PlotGUI but only one Plot Controls 
window. Selecting a plot and clicking on its "gray space" (the gray margin area around 
the actual plot axes) will automatically bring the Plot Controls interface to the front.  

At the top of the Plot Controls window is a Figure Selector pull-down menu, which 
indicates the current figure being controlled. Below this are three Axis Menus, one for 
each of the x, y and z axes of a plot. Before data are loaded, all of these menus will be 
empty. Data can be loaded into the GUI by using the File/Load Data menu in the Plot 
Controls window or by providing it in the command line instruction 

» plotgui(mydata) 

After loading data, a plot will appear and the pull-down Axis Menus will list the 
available columns of the loaded data. Changing the plot is accomplished by changing the 
selections on the Axis Menus. Selections from the y-axis menu are plotted against the 
selection from the x-axis menu. A three-dimensional plot can be created by selecting an 
item from the z-axis menu. If “auto-update” is checked, plots are automatically updated 
when new selections are made. Otherwise, the Plot button must be pressed after changing 
the axis menu selections. 

Multiple y-axis items can be simultaneously plotted by holding down the Control key 
when making selections (As these plots can get confusing, a legend can be added to the 
plot by selecting Insert/Legend from the menus on the plot itself). In addition to the 
columns of the DataSet Object, the x-axis menu also allows plotting against the sample 
number (i.e., row number) and any axisscale stored in the DataSet Object. In Figure 2-
28, the Wine DataSet Object has been loaded and the Liquor, Wine, and Beer 
consumption values have been selected to plot against sample number (Plot/Columns). 

In addition to plotting the contents of the data field, 'plotgui' can also display 
information from other DataSet fields. The View menu, shown in Figure 2-28, offers 
various options depending on the DataSet Object contents. The top section of this menu 
allows display of available labels, classes and excluded data (i.e., columns or rows which 
have had their indices removed from the DataSet Object include field). A raw-text table 
of the plotted data can be displayed (View/Table) and axis lines (representing zero on 
each axis) can be added to the plot. 

If labels and numbers on a plot are badly overlapping, they can be "decluttered" by 
selecting one of the options from the View/Declutter Labels menu. There are several 
levels of decluttering. In addition, if Declutter/Selected Only is checked, then labels will 



43 

be shown only for the points which are selected (see below) on a plot. If no points are 
selected, all labels are shown (after decluttering as desired). 

The middle portion of the View menu adds various annotations for axes and selects 
optional log scaling for the axes. 

The bottom part of the View menu contains various other options including creating a 
duplicate “linked” (see Selections below) copy of the current figure in a new window or 
spawning a static copy of the current plot (i.e., a figure not controlled by plotgui). You 
can also create Subplots using the fly-out menu. To operate on  a particular subplot just 
click on it first, then make selections with Plot Controls. 

The Plot menu selects the mode of the DataSet Object from which the menus will select 
and plot data. By default this starts at the highest mode (“Columns” in this example) and, 
thus, the pull-down axis menus will contain an entry for each column in the DataSet 
Object. To plot rows of the DataSet Object, Rows should be selected from this menu, at 
which point the axis menus will display all the available rows. The Data Summary 

 
                                 (a)  (b) 

Figure 2-28. (a) Plot Controls with three columns selected from the Wine DataSet Object.  (b) 
The View menu options with the Wine DataSet loaded. 
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selection allows plotting of various statistics from any mode (selected from the x-axis 
menu). 

Selections: Assigning Classes 

The Select button allows you to make a selection from the plotted data. The default 
selection mode is a standard rubber-band box in which one corner of a box is marked 
when the mouse button is pressed down and the opposite corner is indicated when the 
button is let back up. Any points inside the box will be selected. Different selection 
modes can be set through the Edit/Selection Mode menu. Points can be added to a 
previous selection by pressing Select again and holding down the Shift key while making 
the additional selection. In the same manner, points can be removed from a selection 
using the Control key while making a selection.  

Figure 2-29 illustrates beer consumption versus sample number along with the country 
labels attached to each point. All the European countries have been selected. Selected 
points are usually shown in pink. 

Figure 2-29. Plot of a single column (beer consumption) of the Wine DataSet Object with 
country labels and circles indicating selected (European) points. 

When points are selected, they can be assigned a class by selecting Edit/Set Class (or 
right-clicking the selection and choosing Set Class from the menu) and entering the 
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desired class (if View/Classes is not turned on, it will be turned on automatically so you 
can see symbols representing the current classes for each point). In Figure 2-30, the 
European countries have been assigned to class 1, which appear as triangles. The 
remaining data are automatically assigned class 0 (zero) and shown as black circles. 

Selections: Excluding Data 

Selected points can be “excluded” by selecting Edit/Exclude Selection. When points are 
excluded, the row or column containing each point is removed from the include field of 
the DataSet object. Excluded data can only be viewed in plots if View/Excluded Data is 
selected. To re-include previously excluded data, turn on View/Excluded Data, select the 
points to re-include, then choose Edit/Include Selection.  

Figure 2-31 demonstrates how the Wine data may be viewed by rows by selecting 
Plot/Rows. In this case row 1 (France) is selected. The Life Expectancy and Heart 
Disease variables have been excluded but View/Excluded Data is turned on so that the 
excluded data can be seen as dimmed points. We've also changed the "marker" style by 
using View/Settings… and setting the value to "o" (lower case letter o). If a PCA model 
were created from these data, it would be based only on the first three variables 
(consumption of beer, wine, and liquor). 

Figure 2-30. One column of the Wine DataSet with the European countries set as Class 1. 



 46 

 

Figure 2-31. Wine DataSet row 1 (France) with the last two variables (life expectancy 
and heart disease) excluded, but viewed. 

Exclusions can also be done on the currently plotted data (i.e., the selection in the y-axis 
menu). The Edit/Exclude Plotted menu option will exclude the column(s) or row(s) 
currently selected in the y-axis menu. For example, selecting Edit/Exclude Plotted Data 
when the wine column is plotted would exclude the wine column from the DataSet 
Object. Likewise, selecting Edit/Exclude Not Plotted would exclude everything except 
wine from the DataSet Object. An excluded item will still appear in the y-axis menu but 
will have a double carrot symbol  (>>) prior to the column or row label. 

If changes are made to a dataset (e.g,. the class or include fields) using plotgui, these 
changes must be saved back to the MATLAB workspace (using File/Save) to use the 
modified DataSet Object in other routines. One exception to this is if the plotgui figure 
was invoked by another GUI such as Analysis. In this case, the GUI will handle the 
changes automatically. 

These descriptions of the DataSet Editor and plotgui are intended to introduce you to 
manipulating the contents of DataSet Objects. More sophisticated manipulations of 
DataSet Objects can be performed at the command line. For more technical information 
on DataSet Objects, please see Chapter 16, Advanced Software Information 
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Getting Started with PLS_Toolbox GUIs 

Loading Data from the Workspace into GUI Functions  

Using the data loaded from Section 2.1, we can perform a PCA analysis of these data in a 
PLS_Toolbox GUI (Graphic User Interface). If you type the PLS_Toolbox command 
pca, MATLAB will open the Analysis GUI. This GUI is a generic interface to several 
analysis methods but when opened using the pca command it has the PCA method pre-
selected in the Analysis menu. The details of PCA and other chemometric routines will 
be discussed later – here we intend only to introduce the reader to use of the GUIs. The 
initial window generated by the ‘pca’ function is shown in Figure 2-32. 

 

Figure 2-32. Analysis GUI set for PCA.  

Data may be loaded using the File/Load Data/X-Block menu of the Analysis window 
and then selecting the numerical "data" matrix in the appearing Load window, shown in 
Figure 2-33, and clicking on the Load button.  
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Figure 2-33. Load window from PCA tool. 

When the data are loaded, the interface creates a DataSet Object out of them. You can 
now load the labels created above via the DataSet Editor by selecting Edit/X-Block. Go 
to the Row Labels (Mode 1 or Samples) tab and right click the Label button then select 
Load Label( Figure 2-34). This will bring up a Load window similar to before where 
you can select the SampleLabels cell matrix created above. Do the same for Column 
Labels (Mode 2 or Variables) then close the DataSet Editor by clicking on File/Close 
(changes are automatically saved). 

 

Figure 2-34. DataSet Editor on Row Labels tab with right-click menu.  
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Importing Data Directly into the GUI 

Thus far in this example, we've used the MATLAB import tools to read Excel data into 
the Workspace and then load that data into Analysis. There is a quicker alternative. From 
the File/Import Data/X-Block menu selection in Analysis, one can import data directly. 
Several of the import functions will also attempt to intelligently build a DataSet Object 
with information available in the file. In the case of Redbeerdata.xls, the PLS_Toolbox 
Excel file reading functions are able to parse the data and labels directly into a DataSet 
Object without a manual step. 

 

Figure 2-35. Import Window. 

The import menu item is also available from the DataSet Editor and can be a quick and 
easy way of loading data from a file. In some cases the file parsing functions can't 
correctly interpret labels and data, so some pre-formatting may be necessary.  

Examining Data in the GUI 

Once the data has been loaded into the GUI, it can now be examined by selecting 
Edit/Plot X-Block in the Analysis window. Two windows will appear. The X-data 
window, shown in Figure 2-35, contains the desired graph, while the Plot Controls 
window, Figure 2-36, controls the axes and other contents of the graph. (Note: the Figure 
number assigned to plot windows depends upon the number and status of other figure 
windows, so may not always be the same for a particular type plot.) 
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Figure 2-36. Raw data window from PCA window. 

Notice that in Figure 2-36 the Y-axis is, (by default), the Mean of the variables. You may 
change the Y-axis to the data for all the variables by clicking on Data in the Y: menu in 
the Plot Controls window. Furthermore you may add labels to the variables by choosing 
View/Labels from the Plot Controls window. The result is shown in Figure 2-37. (Note: 
there is also a View menu in the Figure window. This menu serves other MATLAB 
figure functions.) 

 

Figure 2-37. Plot Controls window from PCA tool. 
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Figure 2-38. Plot of the red beer raw data from the PCA window. 

If you wish to copy the Figure for pasting into other software for a report or presentation, 
choose Edit/Copy Options... in the menu of the Raw Data window, and select the 
format that you wish the copy function to use. Then choose Edit/Copy Figure (not 
Edit/Copy) from the menu of the Raw Data window. Alternatively, you can use the 
File/Export Figure menu selection in the Plot Controls to export the figure directly to 
Power Point or Word. Other choices in the Raw Data window menus will allow the user 
to modify the axes labels, font styles, axis limits, and many other properties of the plot.  

You may use the tool bar at the top of the Raw Data window to do modifications of the 
graph such as zooming. For example, to zoom in on a particular part of the figure, click 
on the magnifying glass containing the plus (+) sign and, using the mouse, draw a 
rectangle over the region you wish to resize. This process may be repeated to further 
zoom into a section of the graph. You may zoom out by clicking on the magnifying glass 
with the minus (–) sign and then clicking on the graph as many times as necessary. You 
may add comments in the interior of the graph by selecting the Insert\Text Box menu 
item and drawing a box on the graph where a comment is to be added. 

In summary, the Plot Controls window controls what data are plotted in the Raw Data 
window, while the Raw Data menus and tool bar control how the plot looks. You may 
close both of these windows by clicking on the x in the upper-right corner of the Raw 
Data window. 
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Viewing a PCA Model  

Returning to the Analysis window, we can instruct the function to create a PCA model 
with two principal components by clicking on the calc button (the button with the gears 
pictured on it), selecting the second row of the Percent Variance Captured by PCA 
Model sub-window and finally clicking on the calc button again (Figure 2-39).  

 

Figure 2-39. Beer data in Analysis window with two-component PCA model. 

The additional buttons on the toolbar will then become active when the calculation is 
complete. Clicking on these will produce new figure windows along with a Plot Controls 
window. Clicking on Plot Eigenvalues (the button with a descending plot and a lambda 
symbol) will open an eigenvalue plot of the model. 
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Figure 2-40. Eigenvalue plot suggesting two PCs. 

The eigenvalue plot suggests a good model can be built using two principal components. 
Clicking on Plot Scores (the button with an Erlenmeyer flask on it) will open a scores 
plot. Let's look at a scores-scores plot. To do this, use the Plot Controls window to select 
Scores on PC 1 for the X: axis and Scores on PC 2 for the Y: axis. Next we'll want to 
add labels (View/Labels) and set the lable decluttering to zero so we can see all of the 
labels (View/Declutter Labels/None). You can move the individual labels by clicking 
and dragging them. The plot should look similar to Figure 2-41. 
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Figure 2-41. Scores plot PC1 vs. PC2 (declutter set to "none"). 

Here we can see that some of the samples group together while others seem to be quite 
different. Next, create a biplot by clicking on the button with crossing arrows. Go through 
the same steps as above for adding labels and moving individual labels to make a legible 
plot. The biplot should look similar to Figure 2-42. 
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Figure 2-42. Biplot PC1 vs. PC2 (declutter set to "none"). 

Here we can see that the O.G. (original gravity) and Calories variables are highly 
correlated (appear very close to each other). We also see that Color and Manns Original 
Brown Ale seem to be correlated.  

Let's look at a Loadings plot by clicking the button with a green double-peak plot. Again, 
choose PC 1 for the X axis and PC 2 for the Y axis and turn off decluttering and position 
labels as needed. The loadings plot should look similar to Figure 2-43. 
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Figure 2-43. Loadings Plot PC1 vs. PC2 (declutter set to "none"). 

The Loadings plot shows the same variable information from the Biplot. We can see what 
variables seem to be correlated; for example, Alcohol and pH f.  

Finally, let's look at a plot of Q vs. T-Squared plot. We'll leave the declutter on (light). 
Some of the labels won't be shown but we'll be able to see the plot more clearly.  
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Figure 2-44. Q vs. T-Squared Plot (declutter set to "light"). 

We don't see any really unusual variables here; none of the points are far off on either 
axis. Now that we're reasonably happy with our two PC model we can save it. 

Saving a PCA Model 

Now that we have a model, it can be saved for future use. You may choose File/Save 
Model from the Analysis window File menu and give it a location and name. For now 
we shall save the model to the MATLAB Workspace as beermodel. The default will 
save the model to the MATLAB workspace, but you may choose to save the model to a 
file as well. Remember if you do not save the model to a file now or to a file after leaving 
the GUI, it will be lost when quitting MATLAB! If you loaded the data from a file in the 
GUI, you may also choose to save the data to the MATLAB workspace or to a file using 
the File/Save Data menu. You may now leave the GUI by selecting File/close from the 
main PCA window. 
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Examining a Structure Array in MATLAB 

Typing ‘whos’ will show our original data and our new PCA model, beermodel. 
 
» whos 
  Name                  Size                    Bytes  Class 
 
  SampleLabels          6x26                      312  char array 
  VariablesLabels      11x19                      418  char array 
  ans                   6x26                      312  char array 
  beermodel             1x1                     14606  struct array 
  data                  6x11                      528  double array 
  textdata              8x12                     6226  cell array 
 
Grand total is 2085 elements using 22402 bytes 

Our model has been saved as a new kind of data class called a structure array. We can 
examine this new form by typing the name of the variable, beermodel. 

» beermodel 
 
beermodel =  
 
       modeltype: 'PCA' 
            name: {'data'} 
            date: '25-Aug-2002' 
            time: [2002 8 25 17 16 58.1980] 
            info: 'Scores are in cell 1 of the loads field.' 
           loads: {2x1 cell} 
            tsqs: {2x1 cell} 
    ssqresiduals: {2x1 cell} 
     description: {3x1 cell} 
          detail: [1x1 struct] 

A structure array is a great way to keep associated data together. The model output by the 
PCA tool is composed of a large and varied set of data. We can examine these by 
indicating the subsection or field of the structure array with a period. For example, if we 
type: 

» beermodel.modeltype 
 
ans = 
 
PCA 

the response indicates that this is a PCA model. Some of the fields of our model have 
multiple parts. If we type: 
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» beermodel.loads 
 
ans =  
 
    [ 6x1 double] 
    [11x1 double] 

the response tells us that beermodel.loads contains both a 6 x 1 and an 11 x 1 double 
precision matrix. This field is a cell array. We can examine the second matrix in the cell 
array by typing: 

» beermodel.loads{2} 
 
ans = 
 
    0.3747 
    0.3747 
    0.2724 
    0.4164 
    0.4003 
   -0.1282 
    0.4088 
    0.1577 
   -0.3001 
    0.1101 
    0.0271 

Manually dissecting a model can lead to inconsistencies in the model structure, so it is 
recommended, should you need to use or examine your PCA model, that you first try 
using a GUI tool. You may start the PCA Tool by typing pca at the command prompt, 
and then load your saved model from either the MATLAB Workspace or from a saved 
file using the File/Load Model menu in the PCA window. 

If you have not saved your model or data from the GUI, be sure to save it now from the 
MATLAB Workspace! 

Creating a PLS Model 

In this example we will create and inspect a PLS (Partial Least Squares Regression, 
Chapter 6) model. Use the following commands to load the Hald DataSet and start PLS: 
 
>> load halddata 
 
>> pls 

Load both the x and y block data via the File/Load Data/Both menu and click the Calc 
button. Then select the first two latent variables and click the Calc button again to create 
a model using two latent variables (LVs) (Figure 2-45). 
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Figure 2-45. Two-LV model of Hald DataSet. 

Now calculate the cross validation statistics for the model using Tools/Cross-Validation. 
Set the Method to "leave one out" (Figure 2-46). This will clear the model;press the Calc 
button again to re-calculate the model using cross-validation.  

 

Figure 2-46. Cross-validation for two-LV model. 
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Now look at a scores-scores plot by clicking the Scores button and selecting LV1 for the 
X: axis and LV 2 for the Y: axis. Also add the sample numbers as labels to each point 
using the View/Numbers menu item (Figure 2-47).  

 

Figure 2-47. Scores plot LV1 vs. LV2 (declutter set to "none"). 

We see that samples 3, 6, and 7 seem to be related. Next, let's change the x-axis to "y-
measured" and the y-axis to "y-predicted". Then add a legend showing the cross-
validation statistics by right-clicking on the green y-predicted line and selecting Show on 
figure. Reposition the legend by clicking on it and dragging it to a new position (Figure 
2-48).  
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Figure 2-48. Y-measured vs. Y-predicted with Cross-Val legend. 

It appears as if the model does capture the trend of the data, with a calibration error of 
roughly 2 calories.  

Now, create a Loadings plot with LV 1 as the x-axis and LV 2 as the y-axis. Add labels 
using the View menu item from the Plot Controls (Figure 2-49). 
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Figure 2-49. Loadings plot LV1 vs. LV2. 

Here we see that none of the variables are highly correlated in both LV 1 and LV 2. We 
also  that LV 2 does not capture much variance in tricalcium silicate.  

Now look at the regression vector vs. variables by selecting Variable for the x-axis and 
Reg Vector for Y 1 calories for the y-axis in the Plot Controls (Figure 2-50). Add labels 
and adjust the axis to better see the plot using the following command: 
 
>> axis([.5 4.5 -.55 .55]) 
 

Clicking on the y axis menu item in the Plot Controls again will reset the horizontal axis 
line correctly.  
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Figure 2-50. Regression vector vs. variable (axis adjusted from command line). 

This plot suggests that increases in either of the first two variables will tend to increase 
the heat of reaction, while an increase in dicalcium silicate will tend to decrease the heat 
of reaction. Although the regression coefficient for the third variable (tetracalcium 
alumino ferrite) indicates that changes in that variable have little impact on the predicted 
heat of reaction, interpretation of regression coefficients can be complicated (see Partial 
Least Squares and Principal Component Regression topics in Chapter 6). The regression 
coefficients are best understood as the direction in the data which is parallel to the 
property of interest (heat of reaction in this case) and perpendicular to other effects 
observed in the data. 

Finally, create a Q vs. T-squared plot (Figure 2-51) using the same procedure as with the 
PCA model from earlier in this chapter (see Figure 2-44). 
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Figure 2-51. Plot of T-squared vs. Q. 

Samples high in T-squared are described as having high leverage on the model, but none 
of the samples seem like they're "on their own" in either T-squared or Q. 

This concludes our "quick start" section. We've shown how to load data, calculate a 
model, and create some of the typical plots used for PCA and PLS. In the next section 
we'll take a more detailed look at the user interfaces. 
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3. An Introduction to Linear Algebra 
Linear algebra is the language of chemometrics. One cannot expect to truly understand most 
chemometric techniques without a basic understanding of linear algebra. This section 
reviews the basics of linear algebra and provides a foundation for the Chemometrics Tutorial 
section that follows. It is presented in a rather dense fashion: no proofs are given and there is 
often little discussion of the theoretical implications of the theorems and results presented. 
The goal has been to condense into as few pages as possible the aspects of linear algebra 
used in most chemometric methods. MATLAB commands for performing the operations 
listed are also included; the reader is encouraged to run the examples presented in the text. 
Those already familiar with linear algebra can easily skip this section. Other readers may 
find this section to be a good quick review. Those totally unfamiliar with linear algebra 
should consider spending some time with a linear algebra text. In particular, those by Gilbert 
Strang (see references) are particularly easy to read and understand. Several of the numerical 
examples in this section are adapted from Strang’s Linear Algebra and Its Applications, 
Second Edition (Academic Press, 1980). 

Scalars, Vectors and Matrices 

A scalar is a mathematical quantity that is completely described by a single number. Scalar 
variables are generally denoted by lowercase letters. Examples of scalar variables include 
temperature, density, pressure and flow. In MATLAB, a value can be assigned to a scalar at 
the command line:  

» a = 5; 

Here we have used the semicolon operator to suppress the echo of the result. Without this 
semicolon MATLAB would display the result of the assignment: 

» a = 5 
 
a = 
 
      5       

A vector is a mathematical quantity that is completely described by its magnitude and 
direction. An example of a three dimensional column vector might be 

 b = 






 4 
 3 
 5 

  (3-1) 
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Vectors are generally denoted by bold lowercase letters. (In MATLAB no distinction is made 
between the notation for scalars, vectors and matrices: they can be upper or lower case and 
bold letters are not used.) In MATLAB, the vector above could be entered at the command in 
one of several ways. One way would be to enter the vector with an element on each line, like 
this: 

» b = [4 
3 
5] 
 
b = 
 
      4       
      3       
      5       

Another way to enter the vector would be to use the semicolon to tell MATLAB that each 
line was completed. For instance, 

» b = [4; 3; 5]; 

produces the same result as above. Note that square bracketsgenerally indicate that the 
contents are a vector or matrix.  

This vector is represented geometrically in Figure 3-1, where the three components 4, 3 and 
5 are the coordinates of a point in three-dimensional space. Any vector b can be represented 
by a point in space; there is a perfect match between points and vectors. One can choose to 
think of a vector as the arrow, the point in space, or as the three numbers that describe the 
point. In a problem with 400 dimensions (such as in spectroscopy), it is probably easiest to 
consider the 400 numbers.  

The transpose of a column vector is a row vector and vice-versa. The transpose is generally 
indicated by a superscript T, though in some instances, including MATLAB, an apostrophe 
(') will be used. For example: 

 bT = [ ] 4  3  5   (3-2) 

In MATLAB, we could easily assign bT to another variable c, as follows: 

» c = b' 
 
c = 
 
      4            3            5       

A matrix is a rectangular array of scalars, or in some instances, algebraic expressions that 
evaluate to scalars. Matrices are said to be m by n, where m is the number of rows in the 
matrix and n is the number of columns.  A 3 by 4 matrix is shown in Equation 3-3. 
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  A = 






 2  5  3  6 
 7  3  2  1 
 5  2  0  3 

  (3-3) 

This matrix could be entered in MATLAB as follows: 

» A = [2 5 3 6; 7 3 2 1; 5 2 0 3]; 

4
0
0

4
3
5

0
0
5

0
3
0

 

Figure 3-1. Geometric representation of the vector [4 3 5]T. 

Matrices are usually denoted by bold uppercase letters. The elements of a matrix can be 
indicated by their row and column indices, for instance, A2,4 = 1. We can index individual 
matrix elements in MATLAB in a similar way, for instance: 

» A(2,4) 
 
ans = 
 
      1       

Note that here we have used curved brackets. Curved brackets are used to index into matrices 
and in function calls to indicate a collection of input arguments. 

The transpose operator “flips” a matrix along its diagonal elements, creating a new matrix 
with the ith row being equal to the jth column of the original matrix:  



 70 

  AT = 






 2  7  5 

 5  3  2 
 3  2  0 
 6  1  3 

  (3-4) 

This would be done in MATLAB: 

» A' 
 
ans = 
 
      2            7            5       
      5            3            2       
      3            2            0       
      6            1            3       

Vectors and scalars are special cases of matrices. A vector is a matrix with either one row or 
column. A scalar is a matrix with a single row and column. 

Vector and Matrix Addition and Multiplication 

Matrices can be added together provided that the dimensions are consistent; i.e., both 
matrices must have the same number of rows and columns. To add two matrices together, 
simply add the corresponding elements. For instance: 

  



 1  4  3 

 5  4  0   + 



 2  4  1 

 2  6  3   = 



 3  8  4 

 7  10  3   (3-5) 

In MATLAB we might do this as follows: 

» x = [1 4 3; 5 4 0];  
» y = [2 4 1; 2 6 3]; 
» x + y 
 
ans = 
 
      3            8            4       
      7           10            3       

Note that if the matrices are not of consistent sizes, the addition will not be defined: 

  



 1  4  3 

 5  4  0   + 






 2  4 
 1  2 
 6  3 

  = ?? (3-6) 

If you try this in MATLAB, you will get the following: 
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» x = [1 4 3; 5 4 0]; y = [2 4; 1 2; 6 3]; 
» x + y 
??? Error using ==> plus 
Matrix dimensions must agree. 

This is one of the most common error messages you will see when using MATLAB. It tells 
you that the operation you are attempting is not defined. 

Vector and matrix addition is commutative and associative, so provided that A, B and C are 
matrices with the same number of rows and columns, then: 

 A + B = B + A (3-7) 

 (A + B) + C = A + (B + C) (3-8) 

Vectors and matrices can be multiplied by a scalar. For instance, if c = 2, then (using our 
previously defined A): 

  cA = 






 4  10  6  12 
 14  6  4  2 
 10  4  0  6 

  

Multiplication of a matrix by a scalar in MATLAB is done using the * operator: 

» c = 2; 
» c*A 
 
ans = 
 
      4           10            6           12       
     14            6            4            2       
     10            4            0            6       

Note that scalar multiplication is commutative and associative, so if c and d are scalars: 

 cA = Ac (3-9) 

 (c + d)A = cA + dA  (3-10) 

Vectors can be multiplied together in two different ways. The most common vector 
multiplication is the inner product. For the inner product to be defined, the two vectors must 
have the same number of elements or dimension. The inner product is the sum over the 
products of corresponding elements. For instance, for two 3 element column vectors a and b 
with 

 a = 






 2 
 5 
 1 

  and b = 






 4 
 3 
 5 

  (3-11) 

the inner product is 
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 aTb = [ ] 2  5  1   






 4 
 3 
 5 

  = [2*4 + 5*3 + 1*5] = 28 (3-12) 

Note that the inner product of two vectors produces a scalar result. In MATLAB, this 
example looks like: 

» a = [2; 5; 1]; b = [4; 3; 5]; 
» a'*b 
 
ans = 
 
     28   
The inner product occurs often in the physical sciences and is commonly referred to as the 
dot product. We will see it often in regression problems where we model a system property 
or output (such as a chemical concentration or quality variable) as the weighted sum of a 
number of different measurements.     

The inner product is also used when calculating the length of a vector. The length of a vector 
is the square root of the sum of the squares of the vector coefficients (not to be confused with 
the number of elements or dimension of a vector). The length of a vector a, denoted ||a|| (also 
known as the 2-norm of the vector), is the square root of the inner product of the vector with 
itself: 

 ||a|| = aTa  (3-13) 

We could calculate the norm of the vector a above explicitly in MATLAB with the sqrt 
(square root) function. Alternately, we could use the norm function. Both methods are shown 
here: 

» sqrt(a'*a) 
 
ans = 
 
    5.4772 
 
» norm(a) 
 
ans = 
 
    5.4772 

The vector outer product is encountered less often than the inner product, but will be 
important in many instances in chemometrics. Any two vectors of arbitrary dimension 
(number of elements) can be multiplied together in an outer product. The result will be an m 
by n matrix where m is the number of elements in the first vector and n is the number of 
elements in the second vector. As an example, take 
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 a = 






 2 
 5 
 1 

  and b = 









 4 

 3 
 5 
 7 
 9 

  (3-14) 

The outer product of a and b is then: 

abT = 






 2 
 5 
 1 

   ⊗ [ ] 4  3  5  7  9   = 






 2*4  2*3  2*5  2*7  2*9 
 5*4  5*3  5*5  5*7  5*9 
 1*4  1*3  1*5  1*7  1*9 

  

 = 






 8  6  10  14  18 
 20  15  25  35  45 
 4  3  5  7  9 

  (3-15) 

In MATLAB this would be: 

» a = [2 5 1]'; b = [4 3 5 7 9]'; 
» a*b' 
 
ans = 
 
     8     6    10    14    18 
    20    15    25    35    45 
     4     3     5     7     9 

Here we used a slightly different method of entering a column vector: it was entered as the 
transpose of a row vector. 

Two matrices A and B can be multiplied together, provided that the number of columns in A 
is equal to the number of rows in B. The result will be a matrix C that has as many rows as A 
and columns as B. Thus, one can multiply Amxn by Bnxp and the result will be Cmxp. The ijth 
element of C consists of the inner product of the ith row of A with the jth column of B. As an 
example, if  

 A = 



 2  5  1 

 4  5  3   and B = 






 4  3  5  7 
 9  5  3  4 
 5  3  6  7 

  (3-16) 

then 

 AB = 



 2*4+5*9+1*5  2*3+5*5+1*3  2*5+5*3+1*6  2*7+5*4+1*7 

 4*4+5*9+3*5  4*3+5*5+3*3  4*5+5*3+3*6  4*7+5*4+3*7   

 = 



 58  34  31  41 

 76  46  53  69   (3-17) 



 74 

In MATLAB: 

» A = [2 5 1; 4 5 3]; B = [4 3 5 7; 9 5 3 4; 5 3 6 7]; 
» A*B 
 
ans = 
 
    58    34    31    41 
    76    46    53    69 

Matrix multiplication is distributive and associative: 

 A(B + C) = AB + AC (3-18) 

 (AB)C = A(BC) (3-19) 

but is not, in general, commutative: 

 AB ≠ BA (3-20) 

Other useful matrix identities include the following: 

 (AT)T = A (3-21) 

 (A + B)T = AT + BT (3-22) 

 (AB)T = BTAT (3-23) 

Orthogonal and Orthonormal Vectors 

Vectors are said to be orthogonal if their inner product is zero. The geometric interpretation 
of this is that they are at right angles to each other or perpendicular. Vectors are orthonormal 
if they are orthogonal and of unit length, i.e,. if their inner product with themselves equals 1. 
For an orthonormal set of column vectors vi, with i = 1, 2, ... n, then 

 viTvj = 


 0 for i ≠ j

1 for i = j   (3-24) 

Note that it is impossible to have more than n orthonormal vectors in an n-dimensional space. 
For instance, in three dimensions, one can only have three vectors that are orthogonal, and 
thus, only three vectors can be orthonormal (although there are an infinite number of sets of 
three orthogonal vectors). Sets of orthonormal vectors can be thought of as new basis vectors 
for the space in which they are contained. Our conventional coordinate system in three 
dimensions consisting of the vectors [1 0 0]T, [0 1 0]T and [0 0 1]T is the most common 
orthonormal basis set;, however, as we shall see when we consider Principal Components 
Analysis in the next chapter, it is not the only basis set, nor is it always the most convenient 
for describing real data.  
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Special Matrices 

There are several special matrices that deserve some attention. The first is the diagonal 
matrix, which is a matrix whose only non-zero elements lie along the matrix diagonal; i.e., 
the elements for which the row and column indices are equal are non-zero. A sample 
diagonal matrix D is shown here: 

 D = 






 4  0  0  0 
 0  3  0  0 
 0  0  7  0 

  (3-25) 

Diagonal matrices need not have the same number of rows as columns; the only requirement 
is that only the diagonal elements be non-zero. We shall see that diagonal matrices have 
additional properties which we can exploit.  

Another special matrix of interest is the identity matrix, typically denoted as I. The identity 
matrix is always square (number of rows equals number of columns) and contains ones on 
the diagonal and zeros everywhere else. A 4 by 4 identity matrix is shown here 

 I4x4 = 






 1  0  0  0 

 0  1  0  0 
 0  0  1  0 
 0  0  0  1 

  (3-26) 

Identity matrices can be created easily in MATLAB using the eye command. Here we create 
the 3 by 3 identity matrix: 

» id = eye(3) 
 
id = 
 
     1     0     0 
     0     1     0 
     0     0     1 

Any matrix multiplied by the identity matrix returns the original matrix (provided, of course, 
that the multiplication is defined). Thus, for a matrix Amxn and identity matrix I of 
appropriate size 

 AmxnInxn = ImxmAmxn = Amxn (3-27) 

The reader is encouraged to try this with some matrices in MATLAB. 

A third type of special matrix is the symmetric matrix. Symmetric matrices must be square 
and have the property that they are equal to their transpose: 

 A = AT (3-28) 
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Another way to say this is that Aij = Aji. We will see symmetric matrices turn up in many 
places in chemometrics. Covariance matrices, for example, are symmetric. 

Gaussian Elimination: Solving Systems of Equations 

Systems of equations arise in many scientific and engineering applications. Linear algebra 
was largely developed to solve these important problems. Gaussian elimination is the method 
that is consistently used to solve systems of equations. Consider the following system of 
three equations in three unknowns 

 








 2b1   b2   b3 

 4b1   b2     
-2b1  2b2   b3 

  = 






 1 
-2 
 7 

  (3-29) 

This system can also be written using matrix multiplication as follows: 

 






 2  1  1 
 4  1  0 
-2  2  1 

 








 b1 

 b2 
 b3 

  = 






 1 
-2 
 7 

  (3-30) 

or simply as 

 Xb = y (3-31) 

where 

 X = 






 2  1  1 
 4  1  0 
-2  2  1 

 , b = 








 b1 

 b2 
 b3 

  , and y =  






 1 
-2 
 7 

   (3-32) 

The problem is to find the values of b1, b2 and b3 that make the system of equations hold. To 
do this, we can apply Gaussian elimination. This process starts by subtracting a multiple of 
the first equation from the remaining equations so that b1 is eliminated from them. We see 
here that subtracting 2 times the first equation from the second equation should eliminate b1. 
Similarly, subtracting -1 times the first equation from the third equation will again eliminate 
b1. The result after these first two operations is: 

 






 2  1  1 
 0 -1 -2 
 0  3  2 

 








 b1 

 b2 
 b3 

  = 






 1 
-4 
 8 

  (3-33) 

The first coefficient in the first equation, 2, is known as the pivot in the first elimination step. 
We continue the process by eliminating b2 in all equations after the second, which in this 
case is just the third equation. This is done by subtracting -3 times the second equation from 
the third equation to produce: 
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 2  1  1 
 0 -1 -2 
 0  0 -4 

 








 b1 

 b2 
 b3 

  = 






 1 
-4 
-4 

  (3-34) 

In this step, the second coefficient in the second equation, -1, was the pivot. This system can 
now be easily solved by back-substitution. It is apparent from the last equation that b3 = 1. 
Substituting this into the second equation yields -b2 = -2; thus, b2 = 2. Substituting b3 = 1 
and b2 = 2 into the first equation we find that b1 = -1. 

Gaussian elimination is done in MATLAB with the left division operator \ (for more 
information about \ type help mldivide at the command line, mldivide is the function name 
for \). Our example problem can be easily solved as follows: 

» X = [2 1 1; 4 1 0; -2 2 1]; y = [1; -2; 7]; 
» b = X\y 
 
b = 
 
     -1       
      2       
      1       

It is easy to see how this algorithm can be extended to a system of n equations in n 
unknowns. Multiples of the first equation are subtracted from the remaining equations to 
produce zero coefficients below the first pivot. Multiples of the second equation are then 
used to clear the coefficients below the second pivot, and so on. This is repeated until the last 
equation contains only the last unknown and can be easily solved. This result is substituted 
into the second to last equation to get the second to last unknown. This is repeated until the 
entire system is solved. 

Singular Matrices and the Concept of Rank 

Gaussian elimination appears straightforward enough; however, are there some conditions 
under which the algorithm may break down? It turns out that, yes, there are. Some of these 
conditions are easily fixed, while others are more serious. The most common problem occurs 
when one of the pivots is found to be zero. If this is the case, the coefficients below the pivot 
cannot be eliminated by subtracting a multiple of the pivot equation. Sometimes this is easily 
fixed: an equation from below the pivot equation with a non-zero coefficient in the pivot 
column can be swapped with the pivot equation and elimination can proceed. However, if all 
of the coefficients below the zero pivot are also zero, elimination cannot proceed. In this 
case, the matrix is called singular and there is no hope for a unique solution to the problem. 

As an example, consider the following system of equations: 

 






 1  3  2 
 2  6  9 
 3  9  8 

 








 b1 

 b2 
 b3 

  = 






 1 
-4 
-4 

  (3-35) 
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Elementary row operations can be used to produce the system: 

 






 1  3  2 
 0  0  5 
 0  0  2 

 








 b1 

 b2 
 b3 

  = 






 1 
-6 
-7 

  (3-36) 

This system has no solution as the second equation requires that b3 = -6/5 while the third 
equation requires that b3 = -7/2. If we tried this problem in MATLAB we would see the 
following: 

» X = [1 3 2; 2 6 9; 3 9 8]; y = [1; -4; -4]; 
» b = X\y 
 
Warning: Matrix is singular to working precision. 
 
b = 
 
   -Inf 
    Inf 
   -3.5000 

We will discuss the meaning of the warning message shortly. 

On the other hand, if the right hand side of the system were changed so that we started with: 

 






 1  3  2 
 2  6  9 
 3  9  8 

 








 b1 

 b2 
 b3 

  = 






 1 
-8 
-1 

  (3-37) 

This would be reduced by elementary row operations to:  

 






 1  3  2 
 0  0  5 
 0  0  2 

 








 b1 

 b2 
 b3 

  = 






 1 
-10
-4 

  (3-38) 

Note that the final two equations have the same solution, b3 = -2. Substitution of this result 
into the first equation yields b1 + 3b2 = 5, which has infinitely many solutions. We can see 
that singular matrices can cause us to have no solution or infinitely many solutions and will 
generate warnings at the command line. If we do this problem in MATLAB we obtain: 
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» X = [1 3 2; 2 6 9; 3 9 8]; y = [1; -8; -1]; 
» b = X\y 
 
Warning: Matrix is singular to working precision. 
 
b = 
 
   -Inf 
    Inf 
   -2.0000 

The solution obtained agrees with the one we calculated above, b3 = -2. There are an infinite 
number of solutions for b1 and b2. In this case MATLAB chose the -inf and inf, respectively.  

Consider once again the matrix from our previous example and its reduced form: 

 






 1  3  2 
 2  6  9 
 3  9  8 

  → 






 1  3  2 
 0  0  5 
 0  0  2 

  (3-39) 

We could have taken the elimination one step further by subtracting 2/5 of the second 
equation from the third to produce: 

 






 1  3  2 
 0  0  5 
 0  0  0 

  (3-40) 

This is known as the echelon form of a matrix. It is necessarily upper triangular, that is, all 
non-zero entries are confined to be on, or above, the main diagonal (the pivots are the 1 in 
the first row and the 5 in the second row). The non-zero rows come first, and below each 
pivot is a column of zeros. Also, each pivot lies to the right of the pivot in the row above. 
The number of non-zero rows obtained by reducing a matrix to echelon form is the rank of 
the matrix. Note that this procedure can be done on any matrix; it need not be square. It can 
be shown that the rank of an m by n matrix has to be less than, or equal to, the lesser of m or 
n, i.e:. 

 rank(X) ≤ min(m,n) (3-41) 

A matrix whose rank is equal to the lesser of m or n is said to be of full rank. If the rank is 
less than min(m,n), the matrix is rank deficient or collinear. MATLAB can be used to 
determine the rank of a matrix. In this case we get: 

» rank(X) 
 
ans = 
 
     2 

which is just what we expect based on the result shown in Equation 3-40. 
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Matrix Inverses 

The inverse of matrix A, A-1, is the matrix such that AA-1 = I and A-1A = I. It is assumed 
here that A, A-1 and I are all square and of the same dimension. Note, however, that A-1 
might not exist. If it does, A is said to be invertible, and its inverse A-1 will be unique. 

It can also be shown that the product of invertible matrices has an inverse, which is the 
product of the inverses in reverse order: 

 (AB)-1 = B-1A-1 (3-42) 

This can be extended to hold with three or more matrices, for example: 

 (ABC)-1 = C-1B-1A-1 (3-43) 

How do we find matrix inverses? We have already seen that we can perform elementary row 
operations to reduce a matrix A to an upper triangular echelon form. However, provided that 
the matrix A is nonsingular, this process can be continued to produce a diagonal matrix, and 
finally, the identity matrix. This same set of row operations, if performed on the identity 
matrix, produces the inverse of A, A-1. Said another way, the same set of row operations that 
transform A to I transform I to A-1. This process is known as the Gauss-Jordan method. 

Let us consider an example. Suppose that we want to find the inverse of  

 A = 
















− 122
014
112

 (3-44) 

We will start by augmenting A with the identity matrix, then we will perform row operations 
to reduce A to echelon form: 

 
















135−|4−00
012−|2−1−0
001|112

→
















− 100|122
010|014
001|112

 

We now continue the operation by eliminating the coefficients above each of the pivots. This 
is done by subtracting the appropriate multiple of the third equation from the first two, then 
subtracting the second equation from the first:  

  























−−

−−
−

−

135|400
2
1

2
1

2
1|010

4
1

4
3

4
1|012

→ 























−−

−−
−

−

135|400
2
1

2
1

2
1|010

4
1

4
1

4
1|002
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Finally, each equation is multiplied by the inverse of the diagonal to get to the identity 
matrix: 

 























−−

−

−

4
1

4
3

4
5|100

2
1

2
1

2
1|010

8
1

8
1

8
1|001

 (3-45) 

The matrix on the right is A-1, the inverse of A. Note that our algorithm would have failed if 
we had encountered an incurable zero pivot, i.e,. if A was singular. In fact, a matrix is 
invertible if, and only if, it is nonsingular. 

This process can be repeated in MATLAB using the rref (reduced row echelon form) 
command. We start by creating the A matrix. We then augment it with the identity matrix 
using the eye command and use the rref function to create the reduced row echelon form. In 
the last step we verify that the 3 by 3 matrix on the right is the inverse of A. (The result is 
presented here as fractions rather than decimals by setting the MATLAB command window 
display preference to “rational”). 

» A = [2 1 1; 4 1 0; -2 2 1]; 
» B = rref([A eye(3)]) 
 
B = 
 
      1         0         0        1/8       1/8      -1/8      
      0         1         0       -1/2       1/2       1/2      
      0         0         1        5/4      -3/4      -1/4      
 
» A*B(:,4:6) 
 
ans = 
 
      1         0         0       
      0         1         0       
      0         0         1       

A simpler way of obtaining an inverse in MATLAB is to use the inv command: 

» Ainv = inv(A) 
 
Ainv = 
 
     1/8       1/8      -1/8      
    -1/2       1/2       1/2      
     5/4      -3/4      -1/4      
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Another useful property of inverses is: 

  (AT)-1 = (A-1)T (3-46) 

We could also verify this for our example in MATLAB: 

» inv(A') - inv(A)' 
 
ans = 
 
      0            0            0       
      0            0            0       
      0            0            0       
 

Vector Spaces and Subspaces 

Before continuing on, it is useful to introduce the concept of a vector space. The most 
important vector spaces are denoted R1, R2, R3, ....; there is one for every integer. The space 
Rn consists of all column vectors with n (real) components. The exponent n is said to be the 
dimension of the space. For instance, the R3 space can be thought of as our “usual” three-
dimensional space: each component of the vector is one of the x, y or z axis coordinates. 
Likewise, R2 defines a planar space, such as the x-y plane. A subspace is a vector space that 
is contained within another. For instance, a plane within R3 defines a two dimensional 
subspace of R3, and is a vector space in its own right. In general, a subspace of a vector 
space is a subset of the space where the sum of any two vectors in the subspace is also in the 
subspace and any scalar multiple of a vector in the subspace is also in the subspace. 

Linear Independence and Basis Sets 

In a previous section we defined the rank of a matrix in a purely computational way: the 
number of non-zero pivots after a matrix had been reduced to echelon form. We are 
beginning to get the idea that rank and singularity are important concepts when working with 
systems of equations. To more fully explore these relationships, the concept of linear 
independence must be introduced. Given a set of vectors v1, v2, ... , vk, if all non-trivial 
combinations of the vectors are nonzero: 

 c1v1 + c2v2 + ... + ckvk ≠ 0   unless   c1 = c2 = ... = ck = 0  (3-47) 

then the vectors are linearly independent. Otherwise, at least one of the vectors is a linear 
combination of the other vectors and they are linearly dependent. 

It is easy to visualize linear independence. For instance, any two vectors that are not scalar 
multiples of each other are linearly independent and define a plane. A third vector in that 
plane must be linearly dependent as it can be expressed as a weighted sum of the other two 
vectors. Likewise, any 4 vectors in R3 must be linearly dependent. Stated more formally, a 
set of k vectors in Rm must be linearly dependent if k>m. It is also true that the r nonzero 
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rows of an echelon matrix are linearly independent, and so are the r columns that contain the 
pivots. 

A set of vectors w1, w2, ... , wk, in Rn is said to span the space if every vector v in Rn can be 
expressed as a linear combination of w’s: 

 v = c1w1 + c2w2 + ... + ckwk for some ci. (3-48) 

Note that for the set of w’s to span Rn then k≥n. A basis for a vector space is a set of vectors 
that are linearly independent and span the space. Note that the number of vectors in the basis 
must be equal to the dimension of the space. Any vector in the space can be specified as one 
and only one combination of the basis vectors. Any linearly independent set of vectors can be 
extended to a basis by adding (linearly independent) vectors so that the set spans the space. 
Likewise, any spanning set of vectors can be reduced to a basis by eliminating linearly 
dependent vectors. 

Row Spaces, Column Spaces and Nullspaces 

Suppose that U is the echelon matrix obtained by performing elimination on the m by n 
matrix A. Recall that the rank r of A is equal to the number of nonzero rows of U. Likewise, 
the dimension of the row space of A (the space spanned by the rows of A), denoted R(AT), is 
equal to r, and the rows of U form a basis for the row space of A, that is, they span the same 
space. This is true because elementary row operations leave the row space unchanged. 

The column space of A (the space spanned by the columns of A, also referred to as the range 
of A), denoted R(A), also has dimension r. This implies that the number of independent 
columns in A equals the number of independent rows, r. A basis can be constructed for the 
column space of A by selecting the r columns of U that contain non-zero pivots. 

The fact that the dimension of the row space is equal to the dimension of the column space is 
one of the most important theorems in linear algebra. This fact is often expressed simply as 
“row rank = column rank.” This fact is generally not obvious for a random non-square 
matrix. For square matrices it implies that, if the rows are linearly independent, so are the 
columns. Note also that the column space of A is equal to the row space of AT.  

The nullspace of A, N(A), is of dimension n - r. N(A) is the space of Rn not spanned by the 
rows of A. Likewise, the nullspace of AT, N(AT), (also known as the left nullspace of A) has 
dimension m - r, and is the space of Rm not spanned by the columns of A.  

Orthogonality of Subspaces 

Earlier we defined orthogonal vectors. Recall that any two vectors v and w are orthogonal if 
their inner product is zero. Two subspaces V and W can also be orthogonal, provided that 
every vector v in V is orthogonal to every vector w in W;  i.e., vTw = 0 for all v and w. 

Given the definition of orthogonality of subspaces, we can now state more clearly the 
properties of the row space, column space and nullspaces defined in the previous section. For 
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any m by n matrix A, the nullspace N(A) and the row space R(AT) are orthogonal subspaces 
of Rn. Likewise, the left nullspace N(AT) and the column space R(A) are orthogonal 
subspaces of Rm. 

The orthogonal complement of a subspace V of Rn is the space of all vectors orthogonal to 
V and is denoted V⊥ (pronounced V perp). 

Projections onto Lines 

We will see in the next chapter that the projection of points onto lines is very important in 
many chemometric methods. In general, the projection problem is: given a vector x and a 
point defined by the vector y, find the point p along the direction defined by x which is 
closest to y. This is illustrated graphically in Figure 3-2. Finding this point p is relatively 
straightforward once we realize that p must be a scalar multiple of x;  i.e., p = b̂ x, and that 
the line connecting y to p must be perpendicular to x: 

 xT(y - b̂ x) = 0   →   xTy = b̂ xTx   →   b̂  = 
xTy
xTx  (3-49) 

Therefore, the projection p of the point y onto the line spanned by the vector x is given by 

 p = b̂ x = 
xTy
xTx   x (3-50) 

x
y

p

 

Figure 3-2. The projection of the vector y onto the vector x. 
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The (squared) distance from y to p can also be calculated. The result is 

 ||y - p||2 = 
(yTy)(xTx)-(xTy)2

xTx   (3-51) 

We may also be interested in the projection of a point y onto a subspace. For instance, we 
may want to project the point onto the plane defined by two vectors, or an n-dimensional 
subspace defined by a collection of vectors; that is, a matrix. In this case, the vector x in the 
two equations above will become the matrix X, and the inner product xTx will become XTX. 
If X is m by n and rank r, the matrix XTX is n by n, symmetric (XTX = (XTX)T) and also of 
rank r. Thus we see that if X has linearly independent columns, and therefore rank r = n, 
then XTX is nonsingular and therefore invertible. This is a very important result, as we shall 
see shortly. 

Projections onto Subspaces and Least Squares 

Previously we have considered solving Xb = y only for systems where there are the same 
number of equations as variables (m = n). This system either has a solution or it doesn’t. We 
now consider the case of m > n, where we have more samples (rows) than variables 
(columns), with the possibility that the system of equations can be inconsistent; that is, there 
is no solution which makes the equality hold. In these cases, one can only solve the system 
such that the average error in the equations is minimized.  

Consider for a moment the single variable case xb = y where there is more than one equation. 
The error is nothing more than the length of the vector xb - y, E = ||xb - y||. It is easier, 
however, to minimize the squared length: 

 E2 = (xb - y)T(xb - y) = xTxb2 - 2xTyb + yTy (3-52) 

The minimum of this can be found by taking the derivative with respect to b and setting it to 
zero: 

  
dE2
db   = 2xTxb - 2xTy = 0 (3-53) 

The least squares solution to the problem is then: 

 b̂  = 
xTy
xTx  (3-54) 

This is the same solution we obtained to the projection problem p = b̂ x in Equation 3-49. 
Thus, requiring that the error vector be perpendicular to x gave the same result as the least 
squares approach. This suggests that we could solve systems in more than one variable by 
either geometry or calculus.  

Consider now the system Xb = y, where X is m by n, m > n. Let us solve this system by 
requiring that Xb̂  - y be perpendicular to the column space of X. For this to be true, each 
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vector in the column space of X must be perpendicular to Xb̂  - y. Each vector in the column 
space of X, however, is expressible as a linear combination, say c, of the columns of X, Xc. 
Thus, for all choices of c,  

 (Xc)T(Xb̂  - y) = 0,   or   cT[XTXb̂  - XTy] = 0 (3-55) 

There is only one way that this can be true for all c: the vector in the brackets must be zero. 
Therefore, it must be true that 

 XTXb̂  = XTy (3-56) 

These are known as the normal equations for least squares problems. We can now solve for 
b̂  by multiplying through by (XTX)-1 to obtain: 

 b̂  = (XTX)-1XTy (3-57) 

The projection of y onto the column space of X is therefore 

 p = Xb̂  = X(XTX)-1XTy (3-58) 

In chemometrics we commonly refer to b̂  as the regression vector. Often X consists of the 
matrix of m samples with n measured variables. The vector y consists of some property (such 
as a concentration or quality parameter) for the m samples. We then want to determine a b̂  
that we can use with new samples, Xnew, to estimate their properties ŷ new: 

 ŷ new = Xnewb̂  (3-59) 

As an example, suppose we measured two variables, x1 and x2, on four samples, and also had 
a quality variable y. Our data would then be: 

 X = 






 1  1 

 1  2 
 2  1 
 2  2 

    and   y = 






 6 

 6 
 7 
11

  (3-60) 

We can determine a regression vector b̂  that relates the measured variables x1 and x2 to the 
quality variable y in MATLAB as follows: 

» X = [1 1; 1 2; 2 1; 2 2]; y = [6 6 7 11]'; 
» b = inv(X'*X)*X'*y 
 
b = 
 
    3.0000 
    2.0000      
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Thus, our model for estimating our quality variable is y = 3x1 + 2x2. In MATLAB, however, 
we can simplify this calculation by using the “left division” symbol \ instead of the inv 
operator and get the same result: 

» b = X\y 
 
b = 
 
    3.0000 
    2.0000 

The b̂  can now be used to get p, the projection of y into X, and the difference between y and 
its projection into X, d: 

» p = X*b 
 
p = 
 
      5       
      7       
      8       
     10       
 
» d = y-p 
 
d = 
 
      1       
     -1       
     -1       
      1       

We can also check to see if d is orthogonal to the columns of X. The simplest way to do this 
is to check the value of XTd: 

» X'*d 
 
ans = 
 
   1.0e-14 * 
 
   -0.9770 
   -0.9770 

This gives us the inner product of each of the columns of X with d. We see that the values 
are very close to zero, the only difference from zero being due to machine round off error. 
Thus, d is orthogonal to the columns of X, as it should be. 
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Ill-conditioned Problems 

We have now seen how to solve least squares problems in several variables. Once again, we 
might ask: “when might I expect this procedure to fail?” Based on our previous experience 
with the solution of m equations in m unknowns and the formation of inverses, we expect that 
the least squares procedure will fail when X is rank deficient, that is, when rank(XTX) < n. 
However, what about when X is nearly rank deficient; that is, when one column of X is 
nearly a linear combination of the other columns? Let us consider such a system:    

 X = 






 1  2 

 2  4 
 3  6 
 4  8.0001 

    and   y = 






 2 

 4 
 6 
 8 

  (3-61) 

Here the second column of X is almost, but not quite, twice the first column. In other words, 
X is close to being singular. We can now use MATLAB to estimate a regression vector b̂  for 
this problem: 

» X = [1 2; 2 4; 3 6; 4 8.0001]; y = [2 4 6 8]'; 
» b = X\y 
 
b = 
 
     2 
     0 

Here we see that the system can be solved exactly by y = 2x1. However, what would happen 
if the y data changed a very small amount? Consider changing the third element of y from 6 
to 5.9999 and 6.0001. The following results: 

» X = [1 2; 2 4; 3 6; 4 8.0001]; y = [2 4 6.0001 8]'; b = X\y 
 
b = 
 
    3.7143 
   -0.8571 
 
» X = [1 2; 2 4; 3 6; 4 8.0001]; y = [2 4 5.9999 8]'; b = X\y 
 
b = 
 
    0.2857 
    0.8571 

We see that the regression coefficients changed from b̂  = [3.7143 -0.8571] to b̂  = [0.2857 
0.8571] given this very small change in the data. This is an example of what happens in 
regression when the X matrix is very close to singular. Methods for dealing with these ill-
conditioned problems will be discussed in the next section. 
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Projection Matrices 

We saw previously that given the problem Xb = y, we could obtain the projection of y onto 
the columns of X, p, from:  

 p = X(XTX)-1XTy  (3-62) 

 p = Py (3-63) 

The quantity X(XTX)-1XT, which we shall denote P, is a projection matrix. Projection 
matrices have two important properties: they are idempotent and symmetric. Thus 

 PP = P2 = P (3-64) 

 PT = P (3-65) 

It is easy to see that P must be idempotent: the first application of P projects y into X. A 
second application won’t change the result since Py will already be in the column space of 
X.  

Orthogonal and Orthonormal Bases 

When we think of a basis for a space, such as the x-y plane, we normally think of an 
orthogonal basis; that is, we define our distances in the plane based on two directions that are 
perpendicular. Orthogonal basis sets, it turns out, are convenient from both a conceptual and 
mathematical perspective. Basis sets can be made even simpler by normalizing the basis 
vectors to unit length. The result is an orthonormal basis. An orthonormal basis, v1, v2, ..., vk 
has the property that: 

 viTvj = 


 0 for i ≠ j

1 for i = j   (3-66) 

Of course, we are most familiar with the standard basis, v1 = [1 0 ... 0]T, v2 = [0 1 ... 0]T, 
etc.; however, it is possible to construct an infinite number of orthonormal bases for any 
space of dimension 2 or greater by simply rotating the basis vectors while keeping them at 
right angles to each other. 

Suppose for a moment that we are interested in projecting a vector y onto an X that consists 
of orthonormal columns. In this case, XTX = I, thus 

 P = X(XTX)-1XT = XXT (3-67) 

A square matrix with orthonormal columns is known as an orthogonal matrix (though 
orthonormal matrix would have been a better name). An orthogonal matrix Q has the 
following properties: 

 QTQ = I,   QQT = I,   and   QT = Q-1 (3-68) 
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Furthermore, Q will also have orthonormal rows; if Q is an orthogonal matrix, so is QT. We 
will see this again shortly when we consider Principal Components Analysis (PCA) in the 
next section. 

Pseudoinverses 

We saw previously that we were not able to solve Xb = y using the “normal equations” in the 
case where the columns of X were not independent or collinear. But is that the best we can 
do? Are we simply forced to conclude that there is no solution to the problem? In fact, it is 
still possible to obtain a least squares solution to the problem. To do so, we must introduce 
the concept of the pseudoinverse, X+, for a matrix X that is not invertible. The general 
situation when X is collinear is that there are many solutions to Xb = y. Which one should 
we choose? The one with minimum length of b̂ , ||b̂ ||. To get this, we require that the 
component of b̂  in the nullspace of X be zero, which is the same as saying that b̂  must lie in 
the row space of X. Thus, the optimal least squares solution to any Xb = y is b̂  such that: 

 Xb̂  equals the projection of y into the column space of X, and 

 b̂  lies in the row space of X. 

We call the matrix that solves this problem the pseudoinverse X+, where b̂  = X+y. Note that 
when the columns of X are independent,  

 X+ = (XTX)-1XT (3-69) 

This satisfies our requirements stated above. In the case where X is collinear, we must find 
another way to calculate X+. 

The Singular Value Decomposition 

We now introduce the singular value decomposition, or SVD, which will allow us to obtain a 
general solution to the problem of finding pseudoinverses. Any m by n matrix X can be 
factored into   

 X = USVT (3-70) 

where U is orthogonal and m by m, V is orthogonal and n by n, and S is m by n and diagonal. 
The non-zero entries of S are referred to as the singular values and decrease monotonically 
from the upper left to the lower right of S. 

As an example of the SVD, let us consider the matrix 

 X = 






 1  2  3 

 2  3  5 
 3  5  8 
 4  8 12 

  (3-71) 
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Here we have chosen X to be collinear: the third column is the sum of the first two columns. 
We can now use MATLAB to compute the SVD of X, and verify that the product of the U, S 
and VT reproduces X. 

» X = [1 2 3; 2 3 5; 3 5 8; 4 8 12];  
» [U,S,V] = svd(X) 
 
U = 
 
    0.1935    0.1403   -0.9670    0.0885 
    0.3184   -0.6426    0.0341    0.6961 
    0.5119   -0.5022   -0.0341   -0.6961 
    0.7740    0.5614    0.2503    0.1519 
 
S = 
 
   19.3318         0         0 
         0    0.5301         0 
         0         0    0.0000 
         0         0         0 
 
 
V = 
 
    0.2825   -0.7661    0.5774 
    0.5221    0.6277    0.5774 
    0.8047   -0.1383   -0.5774 
 
» U*S*V' 
 
ans = 
 
    1.0000    2.0000    3.0000 
    2.0000    3.0000    5.0000 
    3.0000    5.0000    8.0000 
    4.0000    8.0000   12.0000 

Note that S is diagonal, and that the diagonal elements decrease from upper left to lower 
right. In fact, the last singular value appears to be zero. Recall now that the inverse of a 
product is the product of the inverses in reverse order. This leads to an explicit formula for 
the pseudoinverse of X, X+: 

 X+ = VS+UT (3-72) 
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Here we must be very careful in formation of S+. In practice, all singular values that are close 
to zero are set to zero in the inverse (the challenge comes with determining what constitutes 
“close to zero”). Alternately, one can think of this as truncation of the matrices U, S and V 
where only the first r columns of U and V are retained, along with the first r rows and 
columns of S, where r = rank(X). In MATLAB, we see for our example: 

» U(:,1:2)*S(1:2,1:2)*V(:,1:2)' 
 
ans = 
 
    1.0000    2.0000    3.0000 
    2.0000    3.0000    5.0000 
    3.0000    5.0000    8.0000 
    4.0000    8.0000   12.0000 

It is apparent that we only need the first two “factors” in the SVD to reproduce the original 
data. The inverse of X, X+ can then be calculated from: 

» Xinv = V(:,1:2)*inv(S(1:2,1:2))*U(:,1:2)' 
 
Xinv = 
 
   -0.2000    0.9333    0.7333   -0.8000 
    0.1714   -0.7524   -0.5810    0.6857 
   -0.0286    0.1810    0.1524   -0.1143 

Note that this is same result as would be obtained from the MATLAB command pinv, which 
uses the SVD and sets all singular values that are within machine precision to zero: 

» pinv(X) 
 
ans = 
 
   -0.2000    0.9333    0.7333   -0.8000 
    0.1714   -0.7524   -0.5810    0.6857 
   -0.0286    0.1810    0.1524   -0.1143 

Let us now return to our ill-conditioned regression problem where 

 X = 






 1  2 

 2  4 
 3  6 
 4  8.0001 

    and   y = 






 2 

 4 
 6 
 8 

  (3-73) 
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Recall that a small change in the third element of y produced wildly different regression 
vectors. We can now repeat this problem assuming that the true rank of X is 1; that is, to 
within measurement accuracy the second column of X is a multiple of the first column. In 
MATLAB we would obtain: 

» X = [1 2; 2 4; 3 6; 4 8.0001]; y = [2 4 6 8]'; 
» [U,S,V] = svd(X); 
» Xinv = V(:,1)*inv(S(1,1))*U(:,1)' 
 
Xinv = 
 
    0.0067    0.0133    0.0200    0.0267 
    0.0133    0.0267    0.0400    0.0533 
 
» b = Xinv*y 
 
b = 
 
    0.4000 
    0.8000 

With this inverse, changing the third element of y would no longer change the result 
significantly: 

» y = [2 4 5.9999 8]'; 
» b = Xinv*y 
 
b = 
 
    0.4000 
    0.8000 
 
» y = [2 4 6.0001 8]'; 
» b = Xinv*y 
 
b = 
 
    0.4000 
    0.8000 

Thus we see that the use of a pseudoinverse can enhance the stability of our calculations. In 
the next section we will see additional ways of forming pseudoinverses. 

Conclusion 

This introduction to linear algebra, while brief, should include most of what the reader needs 
to know in order to tackle the chemometrics literature. Interested readers are encouraged to 
consult one of the many texts on the subject for more detail on the methods, including proofs 
and additional examples. 
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4. Preface to the Tutorial Chapters 
Although the tools found in PLS_Toolbox are applicable in a wide variety of 
applications, its main focus is chemometrics. Chemometrics is often thought of as a sub-
discipline of chemistry, and in particular, analytical chemistry. However, “chemometric 
techniques” have been successfully applied in many areas, and in fact, many were 
“borrowed” from other disciplines to begin with. Problems that are most often thought of 
as being in the domain of the chemical engineer, i.e., chemical processes, can also benefit 
from chemometric methods. PLS_Toolbox includes many functions that can be used in 
the chemical laboratory or process domain, as well as other non-chemical fields.  

In the chapters that follow we provide a tutorial on many of the chemometric methods 
included with PLS_Toolbox, and illustrate the methods with some example problems in a 
variety of applications. This begins with basic data exploration and regression modeling 
and continues through a large number of techniques and applications. 

Some Definitions 

Before moving on to chemometric techniques, it is important that we define 
chemometrics. This has been a matter of debate in the technical community for some 
time; however, we choose the following definition: Chemometrics is the science of 
relating measurements made on a chemical system to the state of the system via 
application of mathematical or statistical methods, and of designing optimal experiments 
for investigating chemical systems. It is clear from the definition that chemometrics is a 
measurement science and is data-based. The goal of many chemometrics techniques is 
the efficient production of an empirical or semi-empirical model, derived from data, 
which is used to estimate one or more properties of a system from measurements. It is 
less obvious from the definition, perhaps, that chemical systems include those under 
observation in the laboratory, as well as those in the open environment, and chemical 
processes. 

Beyond simply obtaining a model that provides useful predictions, chemometric 
techniques can also be used to obtain insight about a chemical system. This is illustrated 
in Figure 4-1. One typically starts with some data taken from a system. This data most 
often is in the form of a table (typically stored as a data file) which contains, for a number 
of samples, some measured properties of the samples. The measurements could be 
derived from spectroscopy or other analytical technique, from process measurements as a 
function of time, or from some other system. Without any further processing, such a table 
would be of little use; it is simply a record of measurements. One might then take the data 
table and calculate the means and variances of the variables, and perhaps look for any 
trends or correlations between variables. At this point, some information has been 
obtained about the system. By looking at additional data sets from the same system or 
perhaps designed experiments, one might obtain some knowledge about how the system 
functions, such as what peaks in a spectrum are related to a compound of interest or what 
manipulated process variables affect particular system outputs. Finally, one might 
combine this largely empirical knowledge of how the system operates with fundamental 
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principles from chemistry and physics to develop an understanding of the system. This 
understanding may lead to improvements in how the system is used and operated that are 
far more valuable than any changes made simply because of predictive models. It is for 
this reason that we emphasize tools that may be used to learn about chemical systems, 
rather than just provide “black box” models of them. 

Chemical systems are typically multivariate, i.e., multiple measurements are made 
simultaneously. Therefore, most chemometric methods fall under the class of statistical 
techniques known as multivariate analysis. Paraphrasing Anderson (1984), multivariate 
statistical analysis is concerned with data that consists of multiple measurements on a 
number of individuals, objects or data samples. The measurement and analysis of 
dependence between variables is fundamental to multivariate analysis. 

Chemistry 
and 

Physics

Data

Information

Knowledge

Understanding
 

Figure 4-1. The information hierarchy. 

Nomenclature and Conventions 

In this tutorial scalars will be represented in lower case italic (s), vectors will be in bold 
lower case (b), and matrices (two-dimensional arrays) will be bold upper case (X). 
Arrays of dimension 3 or higher (i.e., with three or more modes) will be denoted by 
underlined bold upper case letters (D). In two-way data matrices it will be assumed that 
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the rows of the matrix represent samples or observations and the columns represent 
variables. The transpose of X will be denoted XT. A vector b is assumed to be a column 
vector; row vectors are represented as transposes (bT). 
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5. Principal Components Analysis 
Today’s laboratory instruments produce a plethora of data. It is not uncommon for 
processes to have hundreds or thousands of measured variables. Some analytical 
instruments measure tens of thousands of variables. For instance, in a typical FTIR 
spectrometer, the absorbance is measured at over 10,000 frequencies. Chemical processes 
are becoming more heavily instrumented and the data are recorded more frequently (Wise 
et al., 1990; Kresta et al., 1991; Wise and Gallagher, 1996). This increase in 
instrumentation is creating a data overload, and the result is that a good deal of the data 
are “wasted;” that is, no useful information is obtained from them. The problem is one of 
both compression and extraction. Generally, there is a great deal of correlated or 
redundant information in laboratory and process measurements. This information must be 
compressed in a manner that retains the essential information and is more easily 
displayed than each of the variables individually. Also, essential information often lies 
not in any individual variable but in how the variables change with respect to one 
another; that is, how they co-vary. In this case, the information must be extracted from 
the data. Furthermore, in the presence of large amounts of noise, it would be desirable to 
take advantage of some sort of signal averaging. 

Principal Components Analysis (PCA) (Jackson, 1981) is a favorite tool of 
chemometricians for data compression and information extraction. PCA finds 
combinations of variables, or factors,that describe major trends in the data. If X is a data 
matrix with m rows and n columns, and with each variable being a column and each 
sample a row, PCA decomposes X as the sum of r ti and pi, where r is the rank of the 
matrix X: 

 X =  t1pT1 + t2pT2 + ... + tkpTk + ... + trpTr (5-1) 

Here r must be less than or equal to the smaller dimension of X, i.e., r ≤ min{m,n}. The 
ti, pi pairs are ordered by the amount of variance captured. The ti vectors are known as 
scores and contain information on how the samples relate to each other. The pi vectors 
are known as loadings and contain information on how the variables relate to each other. 
Generally the PCA model is truncated after k components and the remaining small 
variance factors are consolidated into a residual matrix E: 

 X =  t1pT1 + t2pT2 + ... + tkpTk + E (5-2) 

While the form of Equation 5-2 may at first seem foreign, there are chemical systems that 
can be modeled with exactly the same equation. For example, if X were a number of 
absorbance spectra of mixtures which followed Beer's law (linear additivity), then the ti 
could be replaced with concentrations and the pi could be replaced with pure component 
spectra. 
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Mathematically, PCA relies upon an eigenvector decomposition of the covariance or 
correlation matrix of the process variables. For a given data matrix X with m rows and n 
columns, the covariance matrix of X is defined as 

 
cov(X) = X

TX
m-1  (5-3) 

provided that the columns of X have been “mean-centered" by subtracting off the original 
mean of each column. If the columns of X have been “autoscaled” (i.e., adjusted to zero 
mean and unit variance by dividing each column by its standard deviation), Equation 5-1 
gives the correlation matrix of X. Unless otherwise noted, it is assumed that data are 
either mean-centered or autoscaled prior to analysis. In the PCA decomposition, the pi 
vectors are eigenvectors of the covariance matrix; that is, for each pi 

 cov(X)pi  = λi pi  (5-4) 

where λi is the eigenvalue associated with the eigenvector pi. The ti form an orthogonal 
set (tiTtj = 0 for i ≠j), while the pi are orthonormal (piTpj = 0 for i ≠j ,  piTpj = 1 for i =j ). 
Note that for X and any ti, pi pair, 

 Xpi = ti (5-5) 

that is, the score vector ti is the linear combination of the original X variables defined by 
pi. Another way to look at this is that the ti are the projections of X onto the pi. The ti, pi 
pairs are arranged in descending order according to the associated λi. The λi are a 
measure of the amount of variance described by the ti, pi pair. In this context, we can 
think of variance as information. Because the ti, pi pairs are in descending order of λi, the 
first pair captures the largest amount of information of any pair in the decomposition. In 
fact, it can be shown that the t1, p1 pair captures the greatest amount of variation in the 
data that it is possible to capture with a linear factor, and that each subsequent pair 
captures the greatest possible amount of variance remaining after subtracting tipTi from 
X.  

Generally it is found (and it is usually the objective) that the data can be adequately 
described using far fewer factors than original variables. Thus, the data overload problem 
can be solved by observing fewer scores (weighted sums of the original variables) than 
original variables, with no significant loss of information. It is also often found that PCA 
turns up combinations of variables that are useful descriptions, or even predictors, of 
particular events or phenomena. These combinations of variables are often more robust 
indicators of laboratory sample or process conditions than individual variables due to the 
signal averaging aspects of PCA. 

Principal Components Analysis is shown graphically in Figure 5-1. Shown here are the 
values of three variables measured on a collection of samples. When plotted in three 
dimensions, it is apparent that the samples all lie on a plane and can be enclosed by an 
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ellipse. It is also apparent that the samples vary more along one axis of the ellipse than 
along the other. The first PC describes the direction of the greatest variation in the data 
set, which is the major axis of the ellipse. The second PC describes the direction of 
second greatest variation, which is the minor axis of the ellipse. In this case, a PCA 
model (the scores and loadings vectors and associated eigenvalues) with two principal 
components adequately describes all the variation in the measurements.  
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Figure 5-1. Graphical representation of Principal Components Analysis. 

Statistics Associated with PCA Models 

Scores (t) from PCA models have mean zero (assuming the data matrix X has been 
mean- centered prior to decomposition) with variance equal to their associated 
eigenvalue. Thus, if it is assumed that the scores are normally distributed, one can 
calculate confidence limits for the scores by applying the Student’s t-distribution. 
Therefore, the limits on the scores for the ith PC for confidence limits 1-α would be  

 ti,α = ± sqrt(λi)*tm-1,α/2 (5-6) 

where m is the number of samples and tm-1,α/2 corresponds to the probability point on the 
(single sided) t-distribution with m-1 degrees of freedom and area α/2. A word of caution 
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regarding the use of confidence limits on scores is advised, however. If the underlying 
physical phenomena which are related to the scores are not a random process, the scores 
will not be normally distributed, violating the assumption of Equation 5-6. Examples of 
this include when some of the variables in a system are controlled, when the data come 
from a designed experiment, or when the data are clustered due to some underlying 
physical phenomena. 

It is also possible to calculate a lack-of-fit statistic for PCA models, Q. Q is simply the 
sum of squares of each row (sample) of E (from Equation 5-2); i.e., for the ith sample in 
X, xi: 

 Qi = eieiT = xi(I - PkPkT)xiT (5-7) 

where ei is the ith row of E, Pk is the matrix of the k  loadings vectors retained in the PCA 
model (where each vector is a column of Pk) and I is the identity matrix of appropriate 
size (n by n). The Q statistic indicates how well each sample conforms to the PCA model. 
It is a measure of the difference, or residual, between a sample and its projection into the 
k principal components retained in the model.  

A single row of the m by n E matrix, ei, represents the Q contributions for a given 
sample. The Q contributions show how much each variable contributes to the overall Q 
statistic for the sample while retaining the sign of the deviation in the given variable. 
Such contributions can be useful in identifying the variables which contribute most to a 
given sample's sum-squared residual error. Because the PCA model captures some 
variables more effectively than others, the residual variance may vary widely between 
variables. The residual variance for the jth variable is: 

 s j
2 = pij

2λi
i= k+1

r

∑  (5-8) 

where pij is the loading of the jth variable in the ith PC (Wise et al., 1989). For the data 
from which the model was obtained, this relationship will be exact. If it is assumed that 
the eigenvalues of all the PCs not retained in the model are equal, then the variance in the 
residual of the jth variable can be estimated using only the PCs and the eigenvalues 
retained in the model from: 

 
 
s j,est

2 = λi
i= k +1

r

∑





1− pij
2

i=1

k

∑





 (5-9) 

The sum of normalized squared scores, known as Hotelling’s T2 statistic, is a measure of 
the variation in each sample within the PCA model. T2 is defined as   

    Ti
2 = t iλ

−1t i
T = x iPkλ

−1Pk
T x i

T  (5-10) 
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where   t i  refers to the ith row of Tk , the m by k matrix of k scores vectors from the PCA 
model, and λ  is a diagonal matrix containing the eigenvalues (λ1 through 
λk) corresponding to k eigenvectors (principal components) retained in the model.  

T2 contributions describe how individual variables contribute to the Hotelling's T2 value 
for a given sample. The contributions to Ti

2  for the ith sample, tcon,i , is a 1 by k vector 
calculated from 

 
   
tcon,i = t iλ

−1/ 2Pk
T = x iPkλ

−1/ 2Pk
T  (5-11) 

The term   tcon  can be considered a scaled version of the data within the PCA model. The 
data are scaled to equalize the variance captured by each PC. Note that this formulation 
for T2 contributions has the property that the sum-squared contributions give   Ti

2  for the 
given sample. That is, 

 Ti
2 = t i ,cont i ,con

T  (5-12) 

Confidence limits can be established for the overall residual Q and T2. Confidence limits 
can be calculated for Q, provided that all of the eigenvalues of the covariance matrix of 
X, the λi, have been obtained (Jackson and Mudholkar, 1979)  
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and 

 h0 = 1−
2Θ1Θ3

3Θ2
2  (5-15) 

In Equation 5-13, cα is the standard normal deviate corresponding to the upper (1-α) 
percentile. In Equation 5-14, k is the number of principal components retained in the 
model and n is the total number of principal components. Thus, n is less than or equal to 
the smaller of the number of variables or samples in X. It is much more likely that 
residual Q will behave “normally” as opposed to the scores. This is because Q is a 
measure of the non-deterministic variation in a system, i.e., the variation remaining after 
the deterministic variation has been removed.  
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Statistical confidence limits for the values for T2 can be calculated by means of the F-
distribution as follows: 

 Tk ,m,α
2 =

k(m − 1)
m − k

Fk ,m− k ,α  (5-16) 

Here m is the number of samples used to develop the PCA model and k is the number of 
principal component vectors retained in the model. 

Some discussion of the geometric interpretation of Q and T2 is perhaps in order. As noted 
above, Q is a measure of the variation of the data outside of the principal components 
included in the PCA model. Going back to the data in Figure 5-1, Q is a measure of the 
distance off the plane containing the ellipse; in fact, Q is the Euclidean distance of the 
data point from the plane formed by the two-component model. A sample with a large Q 
is shown on the upper left side of the figure. This sample is out of the plane of the model 
(although its projection into the model is not unusual). The Q limit defines a distance off 
the plane that is considered unusual based on the data used to form the PCA model. T2, 
on the other hand, is a measure of the distance from the multivariate mean (the 
intersection of the PCs in the figure) to the projection of the sample onto the two 
principal components. The T2 limit defines an ellipse on the plane within which the data 
normally project. A sample with a large T2 value (but small Q) is shown on the upper 
right side of Figure 5-1. 

Note that the calculated confidence limits on Q and T2 make some assumptions regarding 
the distribution of the data; specifically, that they are multivariate normal. Clearly, data 
are often not normally distributed. How can we get away with this assumption? The 
central limit theorem states that sums of several different groups will tend to be normally 
distributed, regardless of the probability distribution of the individual groups (Anderson, 
1984; Box et al., 1978). This suggests that factor-based methods such as PCA will tend to 
produce measures that are more normally-distributed than the original data. This 
assumption still breaks down in some instances, particularly for T2 statistics where the 
data are clustered or otherwise oddly distributed due to some non-normal root cause. 
However, residual statistics are surprisingly well-behaved in a very wide variety of cases.  

A Word About Centering and Scaling 

It was mentioned above that PCA is generally applied to data that have been mean- 
centered. Mean-centering translates the axes of the coordinate system to the center of 
gravity, or centroid, of the data. In Figure 5-1, this is the point where the two PCs cross. 
Without mean-centering, the first PC for the data in Figure 5-1 would go from the origin, 
(at the very front of the figure) to the center of the data. This direction may or may not be 
a useful description of variation in the system. In some systems one might expect the 
various “factors” in the data to have a zero intercept. An example is spectroscopy, where 
a concentration of zero corresponds to zero absorbance. In this instance, forcing the PCA 
to include zero by not mean-centering may be a reasonable thing to do. In other systems 
where the zero point of the measurement scale is arbitrary (e.g., temperature measured in 
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degrees Celsius) the first PC may not provide a useful description of variation in the 
system and will further complicate the analysis because subsequent PCs are constrained 
to be orthogonal to the first one. In the example shown in Figure 5-1, it is easy to see that 
factors that are orthogonal to a line between zero and the data mean are not at all 
descriptive of the true nature of the data.  

Variance scaling, such as autoscaling (which mean-centers and scales the columns to unit 
variance), may be appropriate in systems where the variables have different units; for 
example, temperature, pressure and concentration. Principal Components Analysis 
attempts to capture variation. Numerically, a variation in temperature between 1000 and 
1100 C is much greater than a variation in concentration between 0.01 and 0.1 M. 
However, the effect of each of these variables on the system of interest may be very 
similar, and the information content of the temperature data is not inherently greater. For 
that reason, it may be advisable to autoscale the data. This approach essentially puts all 
variables on an equal basis in the analysis. In other systems where all of the variables 
have the same units, such as spectroscopy, mean-centering may be the appropriate choice 
because one has a reason to believe that variables with a great deal of variation are 
actually more important; that is, they contain more information about the system under 
observation than those with small variation. 

PCA Example I: The Wine Data Set 

Now that we have some background in PCA, we can use the technique with a relatively 
simple data set to see how it works. The data in Table 5-1 were published in Time 
Magazine in January, 1996. The data show the beer, wine and liquor consumption (liters 
per year), life expectancy (years) and heart disease rate (cases per 100,000 per year) for 
the 10 countries listed. The data are plotted in Figure 5-2 (using the MATLAB bar3 
function). It is apparent from the table that there are some significant trends in the data. 
For instance, Russia has the highest liquor consumption, lowest beer consumption, lowest 
life expectancy, and highest heart disease rate.  
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Table 5-1. The Wine data set. 

 liquor wine beer life heart 
 consumption consumption consumption expectancy disease rate 
 liter/year liter/year  liter/year years cases/10e5/yr 
France             2.5    63.5    40.1    78    61.1 
Italy              0.9    58.0    25.1    78    94.1 
Switzerland        1.7    46.0    65.0    78   106.4 
Australia          1.2    15.7   102.1    78   173.0 
Great Britain      1.5    12.2   100.0    77   199.7 
United States      2.0     8.9    87.8    76   176.0 
Russia             3.8     2.7    17.1    69   373.6 
Czech Republic     1.0     1.7   140.0    73   283.7 
Japan              2.1     1.0    55.0    79    34.7 
Mexico             0.8     0.2    50.4    73    36.4 
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Figure 5-2. Raw data from Wine data set. 
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Are the there any other trends in the wine data? Principal Components Analysis will be 
used to investigate this more fully. To get started, execute the following commands at the 
MATLAB prompt: 

» load wine 
» pca 

This will open the PLS_Toolbox Analysis GUI with PCA pre-selected in the Analysis 
menu (Figure 5-3). The wine data can now be loaded into the Analysis GUI by selecting 
the Load Data/X-Block option under the File menu; the variable to load is the DataSet 
Object called wine. This DataSet Object contains labels for the variables and samples, as 
well as other information about the data. At this point, the data have been loaded but not 
analyzed. Before analyzing, we should consider how the data should be preprocessed. 
There are several preprocessing options listed under the Preprocess/X-Block menu: 
none, mean centering, autoscaling, and custom (the default is autoscaling). How should 
we scale these data? One hint is that the variables have different units: liters/year, years 
and cases/person-year. Furthermore, is drinking one liter of hard liquor equivalent to 
drinking a liter of beer? Probably not. This suggests that autoscaling would be a good 
choice. 

Once the scaling selection is made, a PCA model can be calculated by pressing the 
Calculate button. The number of principal components can then be selected by clicking 
on the table and highlighting the line with the last chosen PC. In this case, we will choose 
two PCs (more on how to select the number of PCs later), then click on the Calculate 
button to activate the choice. At this point, the Analysis GUI window should look 
identical to the one shown in Figure 5-3. From the table we see that our two-component 
model captures more than 78% of the variance in the data, which suggests that the data 
are fairly well correlated. However, what is the structure in the data set? 
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Figure 5-3. Wine data loaded and analyzed with PCA. 
 
We can get a quick idea of the relationships between samples by clicking on the Scores 
button, which will create a Plot Controls window, as shown in Figure 5-4, and a window 
containing a plot of the scores on the first PC (not shown). We can now create a plot of 
the scores on the second PC versus scores on the first PC using the Plot Controls, as 
follows: select scores on PC 1 from the drop down menu to the right of the X:; select 
scores on PC 2 by highlighting it in the box to the right of the Y:. Add labels to the plot 
by selecting View/Labels/Country. Add reference lines by selecting View/Axis 
Lines/All. This should create the plot shown in Figure 5-5. From this we see that Russia, 
in the lower left quadrant, is the most unique country in this data set (at least with regard 
to the variables measured). The distance between Russia and its nearest neighbor is 
further than that between Russia and any other country on the plot. We also see a trend 
that stretches from the Czech Republic to France. We expect that countries with similar 
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scores should be similar. For instance, the U.S., Britain, Australia and Mexico are all 
close together, implying that they are similar.  

The scores plot shows us about the relationship between samples. What about the 
relationships between variables? This information can be obtained from a loadings plot. 
Click on the Loads button in the main Analysis window. This will create a plot of 
loadings on the first PC (not shown) and will change the contents of the Plot Controls 
window to reflect that it is now controlling the Loadings plot. Select Loadings on PC 1 
from the drop down menu to the right of the X:, and select Loadings on PC 2 by 
highlighting it in the box to the right of the Y:. Add labels to the plot by selecting 
View/Labels/variable. Add reference lines by selecting View/Axis Lines/All. This 
should create the plot shown in Figure 5-6. 

 

Figure 5-4. Plot Controls window. 
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Figure 5-5. Scores plot from Principal Components Analysis of the Wine data. 
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Figure 5-6. Loadings plot from Principal Components Analysis of the Wine data. 
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The loadings plot in Figure 5-6 shows that none of the variables are very similar (no 
variables are very close to each other on the plot); however, there are some interesting 
things to note. Variables which load most significantly into the first PC are life 
expectancy and heart disease rate; these are the variables which are furthest from zero in 
the left-right direction on the plot. They load with opposite signs, which indicates that 
they are anti-correlated. (It makes some sense that life expectancy varies inversely with 
heart disease rate.) We also see that wine has a positive loading on the first PC, and 
liquor has a negative loading. This suggests that wine is somewhat positively correlated 
with life expectancy; likewise, liquor is somewhat positively correlated with heart 
disease. Along the second PC direction, we see that beer loads positively and liquor and 
wine load negatively. Considering beer, wine and liquor on the two PCs simultaneously, 
we see a sort of ternary diagram with each variable at the point of a triangle. This 
suggests a sort of “name your poison” type of phenomenon; countries apparently tend to 
trade one of these vices for others, but the sum of the three tends to remain constant. 

At this point, we might ask, which variables are responsible for the differences between 
the countries? This information comes from considering the scores and loadings 
simultaneously. For instance, we might want to know what it is that makes Russia 
unique. Russia has a negative score on the first PC and a negative score on the second. 
Thus, we look to the loadings plot to see what variables would give us this condition. 
Increasing the liquor consumption tends to move a sample down and to the left, while 
increasing the heart disease rate tends to move it to the left. Decreasing beer consumption 
moves a sample down; decreasing life expectancy moves it to the left. Changes in wine 
consumption move samples from upper left to lower right, which is orthogonal to the 
direction from the origin of the scores plot to Russia. Thus we would say that Russia 
tends towards high liquor consumption, low beer consumption, a high heart disease rate 
and low life expectancy. This is confirmed by the original data table.  

In a similar way we can determine which variables are responsible for the “trend” from 
the Czech Republic to France. As a sample moves from upper left to lower right, heart 
disease and beer consumption decrease while life expectancy and wine consumption 
increase. Thus, we expect France to have high wine consumption and life expectancy 
with low heart disease and beer consumption. For the Czech Republic the opposite should 
be true. This is indeed confirmed by the original data table. 

Another, sometimes more convenient, way to look at scores and loading plots is to use a 
biplot, which is a combined scores and loadings plot. It allows for easy interpretation of 
which variables are responsible for the observed differences in the sample scores. Click 
on the Biplot button in the main Analysis window, then use the Plot Controls to add 
labels and axes to the plot. The result is shown in Figure 5-7. For examples with few 
variables and samples, biplots can be very convenient.  
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Figure 5-7. Biplot from Principal Components Analysis of the Wine data. 

The scores plot obtained in Figure 5-5 suggests some similarity between groups of 
countries, e.g., the U.S., Britain, Australia and, surprisingly, Mexico. Is this really the 
case? We can check on this by looking at the sample residuals. In the Plot Controls 
window, select Scores in the uppermost menu. (If you have closed the scores figure, you 
must regenerate it first by clicking the Scores button in the main Analysis window.) For 
the X axis select Sample and for the Y axis select Q Residuals. (Add labels using the 
View menu if necessary.) The result should look like Figure 5-8. Here we see that 
Mexico, is not well described by the PCA model. This indicates that, even though it 
projects close to U.S., Australia and Britain, Mexico is actually a relatively long way off 
the plane formed by the two PC model.  



113 

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

Sample Index

Q
 R

es
id

ua
ls

 (
21

.8
6%

)

 France

 Italy 

 Switz  Austra Brit   U.S.A.
 Russia

 Czech 

 Japan 

 Mexico

 

Figure 5-8. Sample Q residuals for two-PC model of Wine data. 

What combination of variables causes Mexico to have this large residual? In other words, 
in what direction does a sample move to change the conditions from a country like the 
U.S. to one like Mexico? The answer can be obtained by looking at the contributions to 
the Q residual. This is just a bar graph of the row of E from Equation 5-2 corresponding 
to Mexico. To get the Q contributions for Mexico, select Scores in the Plot Controls 
window if it is not already selected. Click on the Q con button, then click on the Mexico 
sample in the scores plot. This will produce the plot shown in Figure 5-9 (you may have 
to change limits on the axes via the Edit/Axes Properties… menu on the figure to 
produce this exact plot). Here it can be seen that Mexico is low in all variables 
simultaneously. Again, this can be confirmed by consulting the original data table. 

In summary, PCA of the wine data suggests that, over the countries considered, wine 
consumption appears to be correlated with life expectancy and decreased heart disease 
rate. Is this the whole story? Unfortunately not. PCA does not imply causality, it only 
looks for correlation. It does not say that wine consumption causes longevity any more 
than it says that longevity causes wine consumption. It should also be noted that there are 
many factors that are not at all represented in this data set. For instance, when this data 
set was acquired, Russia certainly did not have the health care infrastructure of many of 
the other countries, but this is not accounted for in any way. Dietary factors and heredity 
are also not considered. However, in spite of its limitations, this simple analysis largely 
agrees with what medical researchers are learning about wine consumption and health. 



114 

1 2 3 4 5

−1

−0.8

−0.6

−0.4

−0.2

0

Variable

Q
 R

es
id

ua
l C

on
tr

ib
ut

io
n

Sample 10 Mexico Q Residual = 3.717 

 L
iq

uo
r

 W
in

e 
 

 B
ee

r 
 

 L
ife

E
x

 H
ea

rt
D

 

Figure 5-9. Q residual contributions for Mexico. 

PCA Example II: Application to a Chemical Process 

We now consider the use of PCA on data produced by a continuous chemical process, in 
this case a Slurry-Fed Ceramic Melter (SFCM) test system (Wise et al., 1991). In this 
process, nuclear waste from fuel reprocessing is combined with glass-forming materials. 
This slurry is fed into a high temperature glass melter, the SFCM, producing a stable 
vitrified product for disposal in a long-term repository. These data are available in the 
PLS_Toolbox file replacedata.mat. Raw data from the process, consisting of 
temperatures in 20 locations within the melter and the molten glass level, are shown in 
Figure 5-10. The temperatures are measured at ten levels in each of two vertical 
thermowells that are inserted into the molten glass pool. (The variables are arranged in 
the data set so that variables 1 to 10 are from the bottom to the top of thermowell number 
1, and variables 11 to 20 are from the bottom to the top of thermowell number 2; variable 
21 is the molten glass level.) It is immediately apparent from Figure 5-10 that there is a 
great deal of correlation in the data. Many of the variables appear to follow a sawtooth 
pattern.  

A Principal Components Analysis can be initiated on these data by executing the 
following commands at the MATLAB prompt: 

» load replacedata 
» pca 
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The first command loads the data set into the MATLAB workspace. The second 
command launches the Analysis GUI pre-set for PCA. The user can now load the data 
into the Analysis GUI using the File/Load Data/X-Block menu. Specifically, we want to 
load the variable named repcal.  
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Figure 5-10. Raw temperature and level data from SFCM process. 

As in the wine example, the first decision to be made is the choice of scaling options. If 
these were only temperature data, (where all the variables had the same units and where 
variables with larger variance were expected to be more important), an argument could be 
made for mean-centering the data. In this case, the inclusion of a level measurement 
argues for autoscaling, which is the default preprocessing option. Thus, the model can be 
built by simply clicking on the Calculate button, which produces the window shown in 
Figure 5-11. The Percent Variance Captured Table shows that the first two PCs capture 
substantial amounts of the variation in the model, with 36% and 30%, respectively.  

Choosing the Number of Factors in a PCA Model 

Once the scaling option is decided, one must determine the number of PCs to retain in the 
model. Unfortunately a foolproof method for automating the choice has yet to be 
discovered. Instead, the choice must be made based upon a few rules of thumb and the 
user’s knowledge of the data.  
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Figure 5-11. Analysis GUI with PCA model of Replacedata. 

It is generally useful to list the eigenvalues in a table along with the percentage of the 
variance that each PC captures, as shown in Figure 5-11. It is also a good idea to plot the 
eigenvalues. This can be done in the Analysis window by clicking on the Plot 
Eigenvalues/RMSECV (descending plot and a lambda symbol) button, which for our 
example problem produces the plot shown in Figure 5-12. When looking at the plot of 
eigenvalues, one looks for a “knee” (on the right-hand side) in the line. It can also be 
helpful to look at the eigenvalues starting from the smallest ones and going back to the 
larger, looking for a sudden jump in the values. It can be seen in Figure 5-12 that the 
eigenvalues get gradually larger until number 5 is reached, then there is a sudden jump up 
to number 4. This is perhaps more apparent in the table in Figure 5-11, where one can see 
how the ratio of successive eigenvalues varies. Note how eigenvalue 4 is larger than 
eigenvalue 5 by a factor of ~2.2, but eigenvalue 5 is larger than eigenvalue 6 by a factor 
of only ~1.3. This suggests that it may be appropriate to choose four PCs for the model. 

The eigenvalues themselves can be considered when choosing number of factors, 
provided the data have been autoscaled. In this case, the eigenvalues will sum to the 
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number of variables, and eigenvalues can be interpreted as the number of original 
variables each PC is worth. For instance, the first PC captures as much variance as over 
7.5 original variables, while the second captures as much variance as 6 original variables. 
A good rule of thumb is that any PC with an eigenvalue less than 1 is probably not 
describing any systematic variance in the system and should likely not be included in the 
model. Eigenvalues greater than 2 usually are describing systematic variation (except in 
some instances where the number of variables is very large relative to the number of 
samples). Eigenvalues between 1 and 2 must be evaluated on a case-by-case basis using 
the other rules given in this section.  

Eigenvalues of similar size should be retained or eliminated together. In our example, this 
rule suggests that PCs 3 and 4, with eigenvalues of 2.1 and 1.8, should either stay or go 
together. The reasoning is that in these instances, there is nearly equal variance in two 
directions, and the individual PCs are rotationally ambiguous; that is, any rotation of the 
pair of PCs spanning the same space is an equally valid representation of the data. Thus, 
eliminating only one of them is essentially arbitrary. PC number 5 has an eigenvalue of 
0.82, and all subsequent eigenvalues are, of course, smaller, suggesting they should not 
be included.  
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Figure 5-12. Eigenvalues from SFCM data in repdata.mat file. 

It is also possible to choose the number of PCs based on cross-validation. In this 
procedure, the data set is divided into a number of equal size segments. A PCA model is 
then built on all but one of the segments. The model is then used to estimate variables 
that are left out of the data (Wise and Ricker, 1991). The error for this “reconstruction” is 
then plotted as a function of the number of PCs used. Generally this is presented as the 
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root-mean-square error of cross-validation (RMSECV). As PCs which describe large 
amounts of systematic variance are added to the model the error should decrease. When 
PCs describing only small noise variance are added, the error should increase.  

Cross-validation can be performed in the Analysis window by selecting Tools/Cross-
Validation, which opens the Cross-Validation window as shown in Figure 5-13. The 
parameters for the cross-validation can be set using this window. In these data, which are 
a time series, it makes the most sense to break the data into contiguous blocks (more on 
this later). The default setting of breaking the data into 10 blocks is chosen, and up to 15 
PCs are to be calculated. Cross-validation is performed by pressing the Calculate button 
in the main window. After the calculations are complete, the RMSECV curve can be 
viewed by pressing the Plot Eigenvalues/RMSECV button then selecting RMSECV in 
the Plot Controls window. The result of this is shown in Figure 5-14, which shows the 
Predictive Residual Error Sum of Squares or PRESS value for the data as function of the 
number of PCs. This is an indication of how well the data can be reconstructed from the 
PCs. This indicates that the minimum reconstruction error was at seven PCs. However, 
the decrease after four PCs was relatively modest.  

 

Figure 5-13. Cross-Validation Window. 

In this instance, the absolute and relative sizes of the eigenvalues suggest that four PCs 
should be retained. The cross-validation suggests that up to seven PCs might be best; 
however, most of the improvement in error is achieved before five PCs. Together, these 
results suggest four PCs for the final model. 

If these rules of thumb were all we had to go on, the choice of the number of PCs would 
still not be easy in many cases. One should also consider the amount of “left over” 
variation in the data as compared to the expected level of noise or other non-deterministic 
variation. In this example, four PCs capture over 85% of the variation. One might ask 
whether it is reasonable to expect 15% non-deterministic variance in the system, i.e., 
what is the noise level? 
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Figure 5-14. Cross-validation PRESS curve for SFCM data in replacedata.mat file. 

When determining the number of PCs to retain, one should also look at the scores and 
loadings. In many problems it can be expected that many variables in the data set will be 
quite correlated. This can be because of spatial relationships (for example, temperature 
sensors that are close to each other should be related) or frequency relationships (for 
example, absorbances at nearby frequencies should be related). Because of these types of 
relationships, the loadings for the first few PCs will often be “smooth” or group the 
variables in a way that makes physical sense. PCs descriptive of noise, however, will 
typically appear random. This is an indication that these PCs do not describe physically 
significant variations. Likewise, one may expect that the scores should indicate 
similarities in the samples. In our example, these similarities may be due to the dynamic 
nature of the data and the fact that the data should be correlated in time. When the scores 
become random, it is probable that they are capturing non-deterministic variation. 

In this example, the number of PCs can be set to 4 by clicking on the fourth PC in the 
table then pressing the Calculate button. 

Viewing and Interpreting the Model 

Once a preliminary model has been obtained the user can now explore the data by 
viewing the scores, which show the relationship between samples, and the loadings, 
which show the relationships between variables. 

The first principal component scores for the SFCM data are shown in Figure 5-15 and the 
corresponding loadings are shown in Figure 5-16. Note how all the temperatures on the 
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left load positively while all the temperatures on the right load negatively. Thus, the 
scores capture the difference between the temperatures on the left and right side of the 
melter, which apparently varies randomly over time. The sawtooth nature of many of the 
process variables, which is attributable to changes in the level in the molten glass pool, is 
captured in the second PC. The level is a controlled variable and its affect on the scores is 
readily apparent. The scores and loadings for the second PC are shown in Figures 5-17 
and 5-18. Examination of the loadings indicates that the variables that contribute most 
strongly to the sawtooth trend are those near the surface of the molten glass pool, 
variables 7–9 and 15–19. The third and fourth PCs (not shown) are harder to interpret. 
Recall that each PC is constrained to be orthogonal to all previous PCs. This constraint 
can make interpretation of the loadings and scores for PCs progressively more difficult as 
the number of PCs increases. 

Multivariate Statistical Process Control 

Once a PCA model is developed, it can be combined with tools and techniques from 
univariate statistical process control (SPC) to form multivariate statistical process control 
(MSPC) tools (Jackson, 1979; Wise et al., 1990, 1991). Control limits can be placed on 
the process scores, “sum of scores” T2, and residual Q. Limits can also be placed on the 
residuals of individual variables (single columns of E) though this will not be addressed 
here. There are multivariate analogs to Shewart, range, and CUSUM charts (Box et al., 
1978). When used for MSPC purposes, PCA models have the additional advantage that 
the new scores variables produced, which are linear combinations of the original 
variables, are generally more normally-distributed than the original variables themselves. 
In our case, we are typically sampling a large number of variables when we form the 
PCA scores and thus we would expect the scores, which, like a mean, are a weighted 
sum, to be approximately normally-distributed. A word of caution is advised here, 
however. In some instances, if score values are associated with a controlled variable 
(such as the level of the SFCM in the example above) we would not expect the scores to 
be normally-distributed. 
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Figure 5-15. Scores on the first PC of the SFCM data. 
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Figure 5-16. Loadings for the first PC of the SFCM data. 
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Figure 5-17. Scores on the second PC of the SFCM data. 
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Figure 5-18. Loadings for the second PC of the SFCM data. 
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The variance captured by the PCA model in each original variable can be viewed by 
clicking the varcap button in the Plot Controls window when Loadings are selected in 
the top menu. The resulting stacked bar chart is shown in Figure 5-19. Here it can be seen 
that the PCA model captures from ~60% to ~93% of the variance in all of the variables. 
The plot also shows how the variance is captured by each PC. For instance, PC1 (dark 
blue) captures the most variation in the lower temperatures (2-6 and 12-16), while the 
second PC (light blue) captures mostly variation in the area where the feed meets the 
molten glass, known an the cold cap (7-9, 17-19) and in the level (21). The fourth PC 
(dark brown) captures variation in the plenum variables (10 and 20). 
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Figure 5-19. Variance captured for each variable in four-PC model. 

A theoretical connection exists between PCA and state space models typically used by 
the process control community for describing the dynamics of a chemical process. Much 
literature is available concerning the state-space formalism (see, for instance, Åstrom and 
Wittenmark, 1984; or Kwakernaak and Sivan, 1972); however, it is useful to provide a 
brief introduction here. Consider a linear, time-invariant, discrete, state-space process 
model: 

 x(k+1) = Φx(k) + Γu(k) + υ(k) (5-14) 

 y(k) = Cx(k) + e(k) (5-15)  

where x(k) is the n by 1 state vector at sampling period k, u(k) is the r by 1 vector of 
process inputs and y(k) is the p by 1 vector of process measurements. The vector υ(k) 
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represents the state noise or disturbance input to the process; e(k) is measurement noise. 
The Φ, Γ, and C matrices are assumed constant. Equation 5-14 shows that the process 
state at time k+1 is a function of the state, process inputs and disturbances at time k. 
Equation 5-15 shows that the process measurements are related to the process states and 
measurement noise.  

It has been shown that, for processes where there are more measurements than states, i.e., 
when there are more elements in y than x, variations in the process states appear 
primarily as variations in the PCA scores, while noise mainly affects the residuals (Wise 
et al., 1990). This allows one to consider only the noise properties of the system when 
deriving limits on PCA residuals; the dynamics of the process need not be considered 
explicitly. The rapid increase in the availability of process analytical instrumentation has 
drastically increased the instances of processes having more measurements than 
(significant) states. 

MSPC Example 

As an example of using a PCA model for MSPC we return now to the SFCM data, which 
includes two test data sets, reptest1 and reptest2. The PCA model just developed can 
be easily applied to the test data. First, the calibration data must be cleared by selecting 
File/Clear/X and Y Blocks in the Analysis window. The new data can then be loaded 
using the File/Load Data/X-Block menu and selecting reptest1 in the dialog box. The 
model is then applied to the new data by clicking the Calculate button. Scores from the 
new data can now be viewed by clicking the Scores button and selecting the desired plot 
in the Plot Controls window. Note that the default is to show the new scores along with 
the scores from the original data. This option can be changed by toggling the Show Cal 
Data with Test checkbox on the Plot Controls window.  

As an example, a scores plot which includes the calibration and test data can be produced 
by pressing the Scores button and selecting PCs 1 and 2 in the Plot Controls window. 
Axes lines can be added by selecting View/Axis Lines/All in the Plot Controls window. 
A 99% confidence ellipse can be added by checking the Conf. Limits box in the Plot 
Controls window and indicating 99% in the text box. The results of performing this 
operation are shown in Figure 5-20. Note that the calibration data are shown as black 
circles while the new data are indicated by red circles. From this plot it is apparent that 
the new data conform to the old data as far as its projection onto the first two PCs is 
concerned. This is certainly not the whole story, however, as we shall see. 

When applying an existing model to new data, the single most useful plot is usually the Q 
residuals for the new samples. This plot tells if the new samples fit the existing model. 
The Q residuals for the new samples can be obtained by selecting Q residuals in the Plot 
Controls window when Scores is selected in the uppermost menu (X axis). Figure 5-21 
shows a Q residuals plot of only the new samples (the Show Cal Data with Test 
checkbox has been unchecked). Note that the 99% confidence limit has been added to the 
plot. It is apparent that there is some sort of excursion around sample 50, the Q residuals 
get very large and stay that way. What variables are responsible for this deviation from 
normal behavior? This information can be obtained by consulting the Q contributions by 
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clicking on the Q con button in the Plot Controls window then clicking on the point of 
interest. The Q contributions are shown for sample 50 in Figure 5-22. (Note that you may 
have to adjust axes limits by using the Edit/Axes Properties… in the Q Residual 
Contributions plot window to get the exact plot shown.) These contributions suggest 
that thermocouple number 5 has gone bad, reading higher than it should. Samples 51-54 
have similar residuals (not shown). It is interesting to check sample 33 to see if it was an 
early indication of the failure of sensor 5. The residuals for it are shown in Figure 5-23. 
Clearly, it is not the same sensor failure, but another type of process anomaly. 

 

Figure 5-20. Scores plot of SFCM data showing new data with calibration data. 
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Figure 5-21. Q residuals for test samples from SFCM data set. 
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Figure 5-22. Contributions of the residuals to sample 50 in SFCM test data. 
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Figure 5-23. Contributions of the residuals to sample 33 in SFCM test data. 

If desired, confidence limits can be calculated for the residuals and the contribution plots 
can be normalized so that equal residuals are of equal significance (Wise et al., 1990). 
(Look for this in a future edition of the toolbox.) 

PCA Summary 

Principal Components Analysis is a widely used technique for exploring and modeling 
multivariate data. It provides an interpretable model of a data set. A PCA model consists 
of the following parts: 

• a mean vector, used for centering the data 
•  a vector of standard deviations or other factor, used for variance scaling the 

data 
•  a set of loadings, which describe directions of variations in the data and show 

the relationships between the variables 
•  a set of scores, which show relationships between the samples 
•  a set of eigenvalues, which give the amount of variance in each of the loading 

directions 
 
Statistical limits can be calculated for the model scores, T2, and Q residuals and 
individual residuals given the eigenvalues and number of samples in the data. 
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New data can be compared with an existing PCA model by: 

• subtracting the original mean from the data 
• scaling the data with the original standard deviations or other factor 
• projecting the new centered and scaled data onto the loadings to get new 

scores, T2 and residual values 
• comparing the scores, T2 values, Q residuals and individual residuals to their 

previously determined limits  
 

All of these steps are done automatically when using the Analysis tool 

The concepts and mathematics used in Principal Components Analysis are common to 
many other multivariate techniques. Thus, a good understanding of the technique forms a 
good foundation for many other chemometric methods. 

Multi-Way PCA 

The PCA method outlined above takes no explicit account of the ordered nature of the 
data set, i.e., the fact that the data were collected in a sequential manner. Reordering the 
samples would produce identical results. There are methods that explicitly consider that 
the data set is ordered. These are referred to as multi-way methods because the data are 
usually organized into time-ordered blocks that are each representative of a single sample 
or process run. The blocks are then arranged into multi-way matrices. Multi-way methods 
are particularly useful for the analysis of batch process data and analytical data where a 
response is being measured as a function of two or more parameters. Examples include 
gas chromatography/mass spectrometry (GC-MS), where the response in ion counts 
arriving at the detector is measured as a function of GC retention time and mass/charge. 
There are many other “hyphenated” analytical techniques which produce a matrix of data 
for each sample. 

Consider the three-dimensional data array shown in the top of Figure 5-24. A data matrix 
of this type would be typical of a series of runs of a batch process (or a series of samples 
from a second order analytical technique such as GC-MS). Here there are j = 1, 2, ..., J 
variables measured at times k = 1, 2, ..., K throughout the batch. Similar data will exist on 
i = 1, 2, ..., I runs of the batch process. The data can be summarized in the three 
dimensional (I × J × K) array X. Different batch runs (samples) are arranged along the 
vertical side, different process measurements (variables) along the horizontal side, and 
time recedes into the figure. Each horizontal slice through the array is a (J × K) matrix 
representing the time history for all variables of a batch of a particular batch or sample. 
Each vertical slice made parallel to the front face of the cube is a (I × J) matrix 
representing the values of all the variables in all the batches taken at a common time. A 
vertical slice made parallel to the side of the cube (the time axis) would represent a (I× 
K) matrix of all the time histories of a single variable for all the batches.  

There are several methods for decomposing the array X (Geladi, 1989). These methods 
include the Tri-Linear Decomposition (TLD) (Sanchez and Kowalski, 1990; Booksh et 
al., 1994), Parallel Factor Analysis (PARAFAC) (Smilde and Doornbos, 1991; Smilde et 
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al., 1994), and Tucker models (Kroonenberg and de Leeuw, 1980). Each of the 
decomposition methods places different constraints on the resulting matrices and vectors. 
Here, we will consider one of the more straightforward approaches, that of multi-way 
PCA (MPCA) (Wold et al., 1987, Wise et al., 1999).  

X
samples

or
batches
I

variables or
measurements

J

time
K

Σ
r = 1

R

E

⊗ +tr Pr

=

I x 1 x 1 1 x J x K

I x J x K  

Figure 5-24. Three-dimensional data array and multi-way PCA decomposition. 

MPCA is statistically and algorithmically consistent with PCA and has the same goals 
and benefits (Nomikos and MacGregor, 1994). In MPCA, the array X is decomposed as 
the summation of the product of score vectors (t) and loading matrices (P) plus a residual 
array E that is minimized in a least-squares sense.  

 ∑
=

+⊗=
R

1r rr EPtX  (5-16) 

Here ⊗ is the outer product operator. This decomposition, shown graphically at the 
bottom of Figure 5-24, is done in accordance with the principles of PCA and separates 
the data in an optimal way into two parts. The noise or residual part E is as small as 
possible and is associated with non-deterministic variation in the data. The systematic 
part, the sum of the tr⊗Pr, expresses the deterministic variation as one part (t) related only 
to batches and a second part (P) related to variables and their time variation.  
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MPCA is equivalent to performing PCA on a large two-dimensional matrix formed by 
unfolding the three-way array X in one of six possible ways, only three of which are 
essentially different. For example, one might unfold X in such a way as to put each of its 
vertical slices (I x J) side by side to the right, starting with the slice corresponding to the 
first time interval. The resulting two-dimensional matrix has dimensions (I × JK). This 
particular unfolding allows one to analyze variability among batches or samples in X by 
summarizing information in the data with respect to variables and their time variation. A 
mathematically-equivalent unfolding would be to take slices off the side of X and place 
them down the time axis, which also forms a matrix with dimensions (I × JK). (The latter 
unfolding orders the matrix with the history of each variable kept together, while the 
former orders the matrix with the all the measurements taken at the same time kept 
together.) One might also be interested in unfolding X in other ways; however, the 
unfolding shown in Figure 5-24 (and the equivalent unfolding mentioned above) are the 
only ways that keep batch (sample)-specific information separate from time and variable 
information. 

The MPCA algorithm proceeds as shown in Figure 5-25. First the matrix is unfolded in 
one of the two equivalent ways described above. Each column of the resulting matrix is 
then mean-centered and, if appropriate, scaled to unit variance (autoscaled). An 
eigenvector decomposition as described in Equations 5-1 and 5-2 is then applied to the 
unfolded X. Each of the p, however, is really an unfolded version of the loadings matrix 
Pr. After the p are obtained, the Pr can be obtained by reversing the unfolding procedure. 
In a similar manner, the three way array E can be formed by folding the PCA residual 
matrix E. The Q and T2 statistics can be calculated using the unfolded solution as shown 
in Equations 5-7 and 5-10.  

This version of MPCA explains the variation of measured variables about their average 
trajectories. Subtracting the average trajectory from each variable (accomplished by 
mean-centering the columns of the unfolded matrix X) removes the major nonlinear 
behavior of the process. The ith elements of the t-score vectors correspond to the ith batch 
(sample) and summarize the overall variation in this batch with respect to the other 
batches in the database over the entire history of the batch. The P loading matrices 
summarize the time variation of the measured variables about their average trajectories. 
The elements of P are the weights, which when applied to each variable at each time 
interval within a batch, give the t scores for that batch. 
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Figure 5-25. Algorithm for performing MPCA. 

Example of MPCA 

As an example of MPCA, consider the problem of monitoring the manufacture of 
semiconductors (Gallagher et al., 1997; Wise et al., 1997, White et al., 1997). There are 
many steps in this process; here we will focus on an Al-stack etch process performed on 
the commercially available Lam 9600 plasma etch tool. The goal of this process is to etch 
the TiN/Al - 0.5% Cu/TiN/oxide stack with an inductively coupled BCl3/Cl2 plasma. 
Data from machine state sensors were collected during wafer processing. The machine 
data consist of 40 process setpoints and measured and controlled variables sampled at 1 
second intervals during the etch. These are engineering variables, such as chamber 
pressure and RF power. In this example, twelve non-setpoint process variables with some 
normal variation will be used for monitoring, as shown in Table 5-2. Also, the physics of 
the problem suggest that these variables should be relevant to process and final product 
state. These data are available in the etchdata.mat file included with PLS_Toolbox.  
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Table 5-2. Machine state variables used for process monitoring. 

 1 Endpoint A Detector 7 RF Impedance 
 2 Chamber Pressure 8 TCP Tuner 
 3 RF Tuner 9 TCP Phase Error 
 4 RF Load 10 TCP Reflected Power 
 5 RF Phase Error 11 TCP Load 
 6 RF Power 12 Vat Valve 

A series of three experiments were performed where faults were intentionally induced by 
changing the TCP power, RF power, pressure, Cl2 or BCl3 flow rate, and He chuck 
pressure. Data from 127 wafers with 20 induced faults are available from these three 
experiments.  

To make the test more representative of an actual sensor failure, the analysis was done 
with “reset” values:  the controlled variable which was changed was reset to have the 
same mean as its normal baseline value, so that it would look normal in the data file. For 
example, if the induced fault was a change of the TCP power from 350 to 400 watts, the 
data file value of the TCP power was reset from a mean of 400 back to 350 by addition of 
a constant bias. The resulting data look as if the controller was seeing a biased sensor for 
TCP power and adjusting accordingly; TCP power would appear normal, but it would not 
be. The effect of a TCP power offset, however, should be evident (we hope) in the 
remaining process variables because the apparent relationship between the TCP power 
and the remaining variables should be different. 

The ‘mpca’ function can be used to start the analysis interface to develop an MPCA 
model of the normal data. Here the data for the 107 normal wafers have been arranged as 
a 80 (time steps) by 12 (variables) by 107 (wafers) matrix. Note that in MPCA, the third 
mode is the default sample mode (largely for historical reasons). This is in contrast to the 
analysis of 2-way arrays, where the first dimension is the sample dimension. For other 
multi-way functions in PLS_Toolbox (PARAFAC, Tucker and NPLS), the convention is 
also that the first dimension is the sample dimension. In all these methods, however, the 
sample mode can be redefined through options.samplemode. A reasonable way to scale 
the data is to use group scaling. In this instance, the mean trajectory is subtracted out of 
the data but the same variance scaling is used for the entire history of each variable. An 
MPCA model can be formed by executing 

» load etchdata 

» mpca 

The first command loads the data set into the MATLAB workspace. The second 
command launches the Analysis GUI pre-set for MPCA. The user can now load the 
EtchCal data into the Analysis GUI using the File/Load Data/X-Block menu. When 
MPCA is selected, the Analysis GUI will default to group scaling, so building a model is 
as simple as clicking the Calculate button. The function will display the variance 
captured table shown in Table 5-3 and allow the user to explore the scores and loadings 
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plots via the Plot Controls window. Here it looks as though two PCs would be 
appropriate based on the distribution of the eigenvalues. A two component model can be 
formed by selecting the second line in the variance captured table and clicking the 
Calculate button  

At first it seems that a model which only captures 46% of the variation in the process is 
not a particularly good one. However, it must be remembered that in MPCA the mean 
trajectory models a great deal of normal process variation, and this mean is extracted 
before calculating the PCA model of the unfolded data.  

Table 5-3. Percent variance captured by MPCA model 
   

Principal     Eigenvalue     % Variance     % Variance 
Component         of          Captured       Captured 
 Number         Cov(X)        This  PC        Total 
---------     ----------     ----------     ---------- 
     1         3.96e+000         33.03          33.03 
     2         1.51e+000         12.59          45.61 
     3         3.03e-001          2.53          48.14 
     4         2.88e-001          2.40          50.54 
     5         1.95e-001          1.63          52.16 
     6         1.86e-001          1.55          53.71 
     7         1.59e-001          1.33          55.04 
     8         1.44e-001          1.20          56.24 
     9         1.26e-001          1.05          57.29 
    10         1.23e-001          1.02          58.31      

The scores from the MPCA model can be plotted by clicking the Scores button on the 
main Analysis GUI. This will generate a Plot Controls window. Select Scores on PC1 
in the X: menu and Scores on PC2 in the Y: menu. The result of this operation is shown 
in Figure 5-27. We have also used the legend command to add the legend on the figure 
as follows: 

» legend('  ','Exp 29','Exp 31','Exp 33') 

It can be seen that the calibration data are clustered according to which experiment the 
data are from. The experiments were run at widely spaced intervals (many weeks) and 
system drift is obvious.  

The loadings for the MPCA model can be explored by clicking the Loads button on the 
main analysis interface, which will generate a Plot Controls window. Note that the 
loadings from MPCA can be quite complex as there is a loading coefficient for each 
combination of variable and time step. The default plot shows the loadings on the first 
PC, as shown in Figure 5-26. Here each line on the plot represents a variable trajectory 
for the first PC. Individual variables can be plotted by clicking Explore in the lower right 
hand corner of the Plot Controls window.  
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Figure 5-26. Loading plot for wafer calibration data. 

The MPCA model can be applied to new data in the Analysis GUI as follows: select 
File/Clear/X and Y Blocks, then File/Load/X-Block, and select the EtchTest data. Click 
the Calculate button to apply the model to the data. The scores of the test data on the 
calibration data can be viewed by clicking the Scores button which brings up the Plot 
Controls window. This window can be used to produce a scores plot with both the 
calibration and test data. Such a result is shown in Figure 5-28. This figure shows the 
scores from the new test wafers with the induced faults with the limits based on the 
calibration data. Note that if you toggle the Show Cal Data with Test check box on and 
off you see that only a few of the test wafers are outside the control limits on these first 
two PCs. The residuals, however, show a different story. Figure 5-29 shows the Q 
residuals for the test wafers with 95% limits. This figure was produced by first selecting 
the calibration data samples using the Select button in the Plot Controls. A good view to 
work from is Scores on the First PC versus sample (not shown). Multiple selections can 
be made by holding down the shift key on subsequent selections. The selected calibration 
samples are then excluded by choosing Edit/Exclude Selection in the Plot Controls 
window. Most of the wafers are out, or nearly out, as we would hope. This suggests that 
MPCA would be a good tool for detecting faults in batch systems. Additional specificity 
can be obtained if models are built on the individual experiments. 
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Figure 5-27. Scores on first two PCs for wafer calibration data. 

 

Figure 5-28. Scores on first two PCs for wafer test data. 
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Figure 5-29. MPCA Q residuals for test wafers. 
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6. Multivariate Regression 
Multivariate Calibration 

In years past, process measurements consisted primarily of traditional “engineering” 
variables such as temperature, pressure, flow rate, and electrical power. In distillation 
control, for example, although the aim was to achieve a specific concentration of product 
in the overhead stream, the column was controlled based upon pressure and temperature 
measurements. Later, the advent of on-line spectrometers provided a means to make even 
better estimates of chemical composition. All of these measurements are indirect and rely 
on the ability to develop a model that relates the set of measured variables to the chemical 
composition of the system (or another, unmeasured, property or state of interest). The 
development of so-called regression models is the focus of this section. Although often 
used in spectroscopic applications (because of the large amount of information available 
in spectroscopic data), the techniques to be discussed have application to a wide range of 
data sources and properties-of-interest. 

Classical Least Squares 

The Classical Least Squares (CLS) model assumes that measurements are the weighted 
sum of linearly independent signals (see, for instance, Erickson et al., 1992). In 
spectroscopy, for example, the CLS model assumes that measured spectra are the sum of 
pure component spectra weighted by the concentration of the analytes. Thus, the model 
is: 

 x = p S (6-1) 

where x is the measured response vector, S is the matrix of pure component responses 
and p is the vector containing the weights (i.e., concentrations) of the analytes. Generally, 
given the vector of measurements, x, one would like to know p, the degree to which each 
component contributes to the overall measurement. p can be determined from 

 p = x S+  (6-2) 

where S+ is the pseudoinverse of S, defined for CLS as: 

 S+ = ST(SST)-1 (6-3) 

The main disadvantage of CLS is that the pure responses S of all spectrally-active 
components must either be known a priori or estimated using known concentrations of 
all spectrally-active components. These estimates must include any minor components 
that may not be of interest themselves but may contribute to the measured signal. Given a 
matrix of concentrations C and measured spectra X, an estimate of the pure component 
spectra Sest can be obtained from 

 Sest = (CTC)-1CTX (6-4) 
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In Equation 6-4, note that the concentration profiles of all spectrally-active species must 
be linearly independent (otherwise (CTC)-1 would not exist, and the pure component 
spectra Sest cannot be estimated). Likewise, in Equation 6-3, note that the pure 
component responses must also be linearly independent (otherwise, (SST)-1 does not 
exist, and S+ cannot be calculated). In the more practical case where the pure component 
responses are nearly collinear, S+ can be calculated, but will be rather unstable, in that it 
may change a great deal given small changes in the estimates of the pure responses due to 
noise or other interferences. In this case, estimates of p obtained by Equation 6-2 may not 
be very accurate. 

The CLS procedure may be demonstrated using the nir_data.mat file in PLS_Toolbox. 
The file contains measured near-infrared absorbance spectra of thirty simulated gasoline 
samples that were prepared from five pure components. An estimate of the pure 
component spectra can be obtained from the mixture spectra spec1 and the concentration 
matrix conc as follows: 

» load nir_data 
» cspec = spec1(1:25,:);  
» cconc = conc(1:25,:); 
» tspec = spec1(26:30,:);  
» tconc = conc(26:30,:); 
» purespec = inv(cconc.data'*cconc.data)*cconc.data'*cspec.data; 
» plot(spec1.axisscale{2},purespec); 

The estimate of the pure component spectra obtained (purespec, or Sest in Equation 6-4) 
is shown in Figure 6-1. The matrix of pure component spectra can then be used to 
estimate concentrations of the analytes in the remaining five samples as follows: 

» cpred = inv(purespec*purespec')*purespec*tspec.data'; 
» plot(tconc.data,cpred','+'); 
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Figure 6-1. Estimate of pure component spectra from NIR spectra of simulated gasoline 
samples. 

The actual versus predicted concentrations are shown in Figure 6-2. In this case, the 
predictions are quite good. If, however, the concentrations of one of the analytes in the 
calibration spectra is not known, the predictions will suffer considerably. The reader is 
encouraged to try this by, for example, excluding one or more of the five columns in the 
pure component concentration matrix conc before calculating the pure component 
spectra. As will be shown below, unknown concentrations are not a problem with inverse 
least squares (ILS) methods. 

Inverse Least Squares 

It is possible to get around the problem of having to know or estimate S by using an 
inverse least squares (ILS) model. ILS assumes that a regression vector b can be used to 
determine a property of the system y from the measured variables x (a row vector, such 
as a spectrum). Thus, the ILS model is 

 x b = y (6-5) 

Compare this inverse model to the classical model in Equation 6-1. In the classical 
model, responses are expressed as a function of pure component concentrations (p), 
whereas the inverse model expresses a single concentration (y) as a function of the 
responses. Note that the inverse model formulation is more widely applicable than the 
classical (CLS) case, for at least two reasons: 1) only the value of the property of interest 
(y)  needs to be known, and 2) this property is not restricted to being a component 
concentration property. 
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The regression vector b must be determined using a collection of measurements X and 
the known values of the property of interest, y. Thus, b is estimated from  

 b = X+ y (6-6) 

where X+ is the pseudoinverse of X. There are many ways to determine a pseudoinverse, 
but perhaps the most common is Multiple Linear Regression (MLR, also known as 
ordinary least squares, OLS). In this case, X+ is defined by  

 X+ = (XTX)-1XT (6-7) 
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Figure 6-2. Actual versus predicted concentrations of simulated gasoline samples from 
NIR spectra. 

Unfortunately, this approach often fails in practice because of collinearity of some or all 
of the response variables in X (e.g., some columns of X (variables) are linear 
combinations of other columns), or because X contains fewer samples than variables 
(fewer rows than columns). In either of these cases, (XTX)-1 would not exist. For 
example, typical spectroscopy calibration problems are extremely ill-conditioned due to a 
high degree of correlation between absorbances at adjacent wavelengths. Also, the 
number of wavelength channels offered by the spectrometer is typically greater than the 
number of calibration samples that are available. In such a case, any attempt to use more 
wavelengths than samples to build an MLR model would result in an underdetermined 
situation, where there are an insufficient number of samples to estimate the regression 
coefficients of all of the wavelengths. 
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In most real systems, exact collinearity of variables in X is rather rare, due to the 
presence of random experimental noise. Nonetheless, when Equation 6-7 is used with 
systems that produce nearly collinear data, the solution for b is highly unstable, in that 
very small perturbations in the original data (for example, from noise or experimental 
error) cause the method to produce wildly different results. The use of highly collinear 
variables in MLR also increases the possibility of overfitting the model, meaning that the 
calibration may fit the data very well, but fails when used to predict the properties of new 
samples. As a result, an important practical aspect of the MLR method is the selection of 
response variables to be included in X, such that collinearity is avoided. 

MLR Example 

As noted in the introduction to this section, the possible applications of regression 
methods go beyond the spectral calibration problem. In one such example of MLR, we 
will develop a regression model that will enable estimation of the level of molten glass in 
the Slurry-Fed Ceramic Melter (SFCM) using temperatures measured in the SFCM (See 
the chapter on PCA for more information about these data). In this example, the 
temperatures and the level of the molten glass take the place of spectral response 
variables and concentration, respectively. The twenty SFCM temperatures, shown in 
Figure 5-11, will serve as the predictor variables in this problem, as they will be used to 
predict the molten glass level. As noted previously, the measured temperatures rise and 
fall with the glass level, which is a controlled variable. A model relating temperatures to 
level would serve as a backup to the level measuring instrument, which is a pneumatic 
device.  

The SFCM temperature and molten glass level data are stored in the file plsdata.mat. 
The file contains 300 calibration or “training” samples (xblock1 and yblock1) and 200 
test samples (xblock2 and yblock2). A simple model relating temperature to level can be 
created using MLR. First we will load the data into MATLAB and delete a few samples 
that are known outliers as follows: 

» load plsdata 
» x = delsamps(xblock1,[73 167 188 278 279]); 
» y = delsamps(yblock1,[73 167 188 278 279]); 

Note that we deleted the samples from both the predictor (xblock1) and predicted 
variables (yblock1). The variables are then mean-centered and a regression vector is 
calculated: 

» [mx,xmns] = mncn(x.data); 
» [my,ymns] = mncn(y.data); 
» bmlr = mx\my; 

Here we have used the backslash “left division” operator in MATLAB to obtain the 
regression vector bmlr. This is equivalent to forming the MLR pseudoinverse (Equation 
6-7). With the regression vector and mean-centering parameters in hand, we can now 
apply the model to a new data set in order to assess its performance. Model application 
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involves first scaling the new predictor variables, applying the model’s regression 
coefficients, and then re-scaling the result, as follows: 

» sx = scale(xblock2.data,xmns); 
» ymlr = sx*bmlr; 
» symlr = rescale(ymlr,ymns); 
» plot(1:200,yblock2.data,'-g',1:200,symlr,'-or') 

A plot of the measured and predicted level is shown in Figure 6-3. Except for a period 
after samples 150 and 175, the predictions look very good. As we will see in the 
following sections, however, it may be possible to do somewhat better using other 
regression techniques, such as PCR and PLS. 

Principal Components Regression 

It was mentioned earlier that regression by MLR suffers from two different problems: 1) 
the relative abundance of response variables relative to the number of available 
calibration samples (for the typical spectral calibration problem), which leads to an 
underdetermined situation, and 2) the possibility of collinearity of the response variables 
in X, which leads to unstable matrix inversions and unstable regression results. Principal 
Components Regression (PCR) is one way to deal with both of these problems (see, for 
example, Næs and Martens, 1988; Martens and Næs, 1989; Geladi and Esbensen, 1991; 
Höskuldsson, 1996). Instead of regressing the properties of interest (e.g., concentrations, 
or molten glass level) onto a set of the original response variables (e.g., spectral response 
variables, or temperatures), the properties are regressed onto the principal component 
scores of the measured variables, (which, by definition, are orthogonal, and 
thereforewell-conditioned). Thus, the pseudoinverse of the response data matrix, X+, is 
estimated as 

 X+ = P (TTT)-1 TT (6-8) 

Compared to the estimation of the pseudoinverse for MLR (Equation 6-7), this operation 
is much more stable, due to the orthogonality of the principal component scores (T) and 
loadings (P). Furthermore, the underdetermined problem in MLR is addressed by the fact 
that the maximum possible number of principal components (PCs) is equal to the lesser 
of the number of response variables and the number of calibration samples, and, as a 
result, can never be greater than the number of calibration samples. 

Because it directly addressesthe collinearity problem, PCR can be said to be less 
susceptible to overfitting than MLR. However, one could still overfit a PCR model, 
through the retention of too many PCs. Therefore, as in PCA, an important part of PCR is 
the determination of the optimal number of principal components to retain in the model. 
In contrast to a PCA model, however, the purpose of a PCR regression model is to predict 
the properties of interest for new samples. As a result, we would like to determine the 
number of PCs that optimizes the predictive ability of the model. The appropriate number 
of PCs is typically determined by cross-validation, which involves a procedure where the 
available data are split sample-wise into a training and a test set. The prediction residual 
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error on the test set samples is then determined as a function of the number of PCs 
retained in the PCR model. This procedure is usually repeated several times, using 
different sample subset selections for training and test sets, such that each sample in the 
original data set is part of a test set at least once. A plot of the total “composite” 
prediction error over all the test sets as a function of the number of PCs retained in the 
model is then used to determine the optimal number of PCs. 

For problems in which there are more samples than variables, a PCR model that retains 
the maximum possible number of PCs (which is equal to the number of variables) is 
identical to the MLR model built using the same set of response variables. In a sense, the 
PCR model “converges” to the MLR model as PCs are added. However, in real 
applications, it is almost always the case that the optimal number of PCs to retain in the 
model is much fewer than the maximum.  
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Figure 6-3. Actual and predicted glass level for SFCM data test set. 

Application of PCR 

As an example, we will return to the SFCM temperature and glass level data (plsdata) 
that were used to demonstrate MLR. We must first decide how to split the available data 
for cross-validation to determine the optimum number of PCs to retain in the PCR model. 
When many training samples are available, a good rule of thumb is to use the square root 
of the number of samples for the number of repetitions of the cross- validation procedure, 
up to a maximum of ten repetitions. With 295 samples in the training set, this rule would 
lead to ten repetitions. 
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We must also decide how to select the test sets for each repetition of the cross-validation 
procedure. One possibility would be to form each test set using every 10th sample in the 
data set. However, when dealing with data from a dynamic system (where the samples in 
the data matrix correspond to sequential points in time), this can be rather dangerous, 
because it is often the case that noise in such a system is not random with time; the 
variation due to noise on the nth sample is correlated to the noise on the n+1th sample. 
Thus, if the cross-validation test sets were chosen using every 10th sample, noise in the 
test data might be highly correlated with noise in the training data, which would “bias” 
the cross-validation results towards suggesting the retention of PCs that explain only 
noise (i.e., overfitting). Instead, when dealing with time series data produced by a 
dynamic system, it is better to choose contiguous blocks of data for the test sets, where 
the length of the block is longer than the settling time of the process. In our case, it is 
convenient to use ten “block-wise” training sets of about thirty samples each. With these 
cross-validation settings, the first test set will contain samples 1 to 30, the second will 
contain samples 31 to 60, and so on. 

The Analysis GUI in PLS_Toolbox can be used to perform cross-validation and build 
PCR (and PLS) models. Start the tool by typing pcr at the MATLAB prompt, which will 
start the Analysis GUI in the PCR mode. The data can be loaded into the tool by 
selecting File/Load Data/Both in the main Analysis window. The user will be prompted 
for X-block (predictor) and Y-block (predicted) variables. Here we will use the DataSet 
Objects x and y, created previously.  

Now that the data are loaded, we need to decide how to preprocess the data for modeling. 
Because the response (temperature) variables with the greatest variance in this data set 
also appear to be correlated to the molten glass level, we’ll choose to mean-center (rather 
than autoscale) the data by selecting Preprocess/X-block/Mean Center in the main 
Analysis window. (Note that the scaling for Y is irrelevant if there is only one Y variable, 
as is the case here.) If desired, a preliminary model can now be built by clicking the 
Calculate button. 

 

Figure 6-4. Cross-validation window. 
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We must now decide how to cross-validate the model. Select Tools/Cross-Validation 
from the menu to open an additional window where the cross-validation parameters can 
be set, as shown in Figure 6-4. Here we will choose to split the data into ten contiguous 
block-wise subsets, and to calculate all twenty PCs. Once this selection is made, the user 
can close the cross-validation window, go back to the main Analysis window and press 
Calculate to cross-validate the model. The variance captured by the PCR model of the 
temperature/level data then appears in the main Analysis window (Figure 6-5).  

 

Figure 6-5. Analysis GUI with PCR model. 

Now that the PCR model and the cross-validation results have been computed, one can 
view the cross-validation results by clicking on the Plot Eigenvalues/RMSECV button. 
This action brings up a Plot Controls window, which can be used to set up and 
manipulate all plots that involve general model statistics. A common plot that is used to 
analyze cross-validation results is called the “Predicted Residual Error Sum of Squares” 
(or PRESS) plot, shown in Figure 6-6. This plot can be obtained by selecting Principal 
Component Number for X: and RMSECV for Y: in the Plot Controls window. The 
Root Mean Square Error of Cross-validation (RMSECV) is a “composite” prediction 
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error obtained over all repetitions of the cross-validation procedure. Note how the 
RMSECV has several local minima and a global minimum at eleven PCs. 

The choice of the number of factors to retain in the PCR model can be somewhat 
problematic under these conditions. Reasonable choices would include six, eight, or 
eleven PCs, as these all produce low RMSECV values. A good rule of thumb is to not 
include additional factors unless they improve the RMSECV by at least 2%. Thus, we 
would definitely choose eight PCs over eleven PCs since the reduction in RMSECV from 
eight to eleven PCs is very small. Our choice is now between six and eight PCs. At this 
point, it might help to consider the percent X and Y variance captured in the PCR model 
(in the main Analysis window) for making a final determination. Note that PCs 7 and 
higher capture less than 0.5% of the variance in both the predictor (X) variables and the 
predicted (Y) variable. A second good rule of thumb is that, when building predictive 
models, one should strive to use a model with the lowest possible complexity. In this 
context, complexity refers to the number of PCs in the PCR model. Given this situation, 
where a model with six PCs and a model with eight PCs capture essentially the same 
amount of both X and Y variance, this rule suggests that a model with six PCs would be 
the best choice. Thus, we choose six PCs for construction of the final model using all 295 
training samples. This is done by clicking on the sixth line of the variance captured table 
in the Analysis window and then clicking the Calculate button, which will update the 
PCR model to include six PCs. Scores and loadings for PCs 1 through 6 can be viewed 
using the toolbar buttons across the top of the main window, along with scores versus 
actual and fitted y values.  
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Figure 6-6. PCR RMSECV for melter data example. 
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The model can be saved by selecting File/Save Model, which opens a Save Model 
dialog box, and entering a name. Note that the default is to save the model to the 
MATLAB workspace. Any model saved to the workspace will be lost whenever the 
workspace is cleared; for example, when MATLAB is shut down. Alternatively, the 
model can be saved directly to a file by clicking the To File button on the lower left of 
the Save Model dialog box. This action would prompt the user to input both a file name 
(for the .mat file that will be saved) and a name for the model structure that will reside in 
that .mat file.  

Returning to the RMSECV plot for the final PCR model (Figure 6-6), note that some PCs 
in the final model (specifically, PCs 2, 4 and 5) actually result in an increase in the 
model’s estimated prediction error. This result suggests that these specific PCs, although 
they help explain variation in the X variables (temperatures), are not relevant for 
prediction of the molten glass level. In the next section, we will look at a technique that 
will help us avoid these irrelevant factors.  

Partial Least Squares 

Partial Least Squares (PLS) regression (Wold et al., 1984; Geladi and Kowalski, 1986; 
Lorber et al., 1987; Martens and Næs, 1989; Höskuldsson, 1996) is related to both PCR 
and MLR, and can be thought of as occupying a middle ground between them. PCR finds 
factors that capture the greatest amount of variance in the predictor (X) variables (e.g., 
spectra or the temperatures in the previous example). MLR seeks to find a single factor 
that best correlates predictor (X) variables with predicted (Y) variables (e.g., 
concentrations or level). PLS attempts to find factors which both capture variance and 
achieve correlation. We commonly say that PLS attempts to maximize covariance, and 
this is the explicit objective of the SIMPLS algorithm for PLS. 

There are several ways to calculate PLS model parameters (see, for example, de Jong, 
1993). Perhaps the most intuitive method is known as NIPALS (Non-Iterative PArtial 
Least Squares). NIPALS calculates scores T and loadings P (similar to those used in 
PCR), and an additional set of vectors known as weights, W (with the same 
dimensionality as the loadings P). The addition of weights in PLS is required to maintain 
orthogonal scores.  

Both the NIPALS and SIMPLS algorithms for PLS also work when there is more than 
one predicted variable (Y). In such cases of multiple Y-variables, scores U and loadings 
Q matrices are also calculated for the Y-block. A vector of “inner-relationship” 
coefficients, b, which relate the X- and Y-block scores, must also be calculated. 

Using NIPALS, the scores, weights, loadings and inner-coefficients are calculated 
sequentially. The PLS decomposition is started by selecting one column of Y, yj, as the 
starting estimate for u1. Usually the column of Y with the greatest variance is chosen. Of 
course, in the case of univariate y, u1 = y. Starting in the X data block: 

 
w 1 = X Tu1

||X Tu1|| (6-9) 
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 t1 = Xw1 (6-10) 

In the y data block: 

 q1 = 
YTt1

||YTt1||  (6-11) 

 u1 = Yq1 (6-12) 

Convergence is then checked by comparing t1 in Equation 6-10 with the value from the 
previous iteration. If they are equal within rounding error, the algorithm proceeds to 
Equation 6-13 below. If they are not, the algorithm returns to Equation 6-9, using the u1 
obtained previously from Equation 6-12. If the Y-block is univariate, Equations 6-11 and 
6-12 can be omitted, q1 can be set to 1, and no iteration is required.  

The X data block loadings are then calculated, and the scores and weights are rescaled 
accordingly: 

 
p1 = X

Tt1

||t1
Tt1|| (6-13) 

 
p1new = p1old

||p1old|| (6-14) 

 t1new = t1old ||p1old|| (6-15) 

 w1new = w1old ||p1old|| (6-16) 

The regression coefficient (b) for the inner relation is then calculated: 

 
b1 = u1

Tt1

t1
Tt1   (6-17) 

After the scores and loadings have been calculated for the first factor (which is 
commonly called a Latent Variable in PLS), the X- and Y-block residuals are calculated 
as follows: 

 E1 = X - t1p1T (6-18) 

 F1 = Y - b1t1q1T (6-19) 

The entire procedure is now repeated for the next latent variable, starting with Equation 
6-9. However, X and Y in Equations 6-9 through 6-12 are replaced with their residuals 
E1 and F1, respectively, and all subscripts are incremented by one. 
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It can be shown that PLS forms the matrix inverse defined by: 

 X+ = W(PTW)-1(TTT)-1TT (6-20) 

where the W, P, and T are as calculated above. Compare this expression for the 
pseudoinverse of the response data matrix, X+, to the equivalent expressions for MLR 
and PCR, in Equations 6-7 and 6-8, respectively. Also, note that the scores and loadings 
calculated in PLS are not the same as those calculated in PCA and PCR. They can be 
thought of, however, as PCA scores and loadings that have been rotated in a manner that 
makes them more relevant for predicting y. As in PCR, the PLS model converges to the 
MLR solution if the maximum possible number of latent variables is retained in the 
model. 

Alternatively, it can be shown that the first PLS weight vector is given by the eigenvector 
of XTYYTX that is associated with the largest eigenvalue; i.e., 

 λw1 = XTYYTXw1 (6-21) 

Based on this equation, another algorithm for calculating PLS models, called SIMPLS, 
was developed by Sijmen de Jong (1993). This method relies on orthogonalization of a 
Krylof sequence to calculate the PLS weights, which is very non-intuitive but very fast 
and accurate. SIMPLS gives the exact same result as NIPALS PLS for univariate y, but a 
slightly different solution for multivariate Y. There is some evidence that this solution is 
actually slightly superior to the NIPALS PLS solution because it maximizes the 
covariance criterion, whereas NIPALS does not. Primarily because of its speed, SIMPLS 
is the default PLS algorithm used in PLS_Toolbox. However, NIPALS is available as an 
option. For more on SIMPLS-related algorithms, see de Jong, Wise and Ricker (2001). 

If the PLS algorithm appears intimidating, do not despair. The important thing to 
remember is that PLS attempts to find factors (called Latent Variables) that maximize the 
amount of variation explained in X that is relevant for predicting Y. This is in contrast to 
PCR, where the factors (called Principal Components) are selected solely based on the 
amount of variation that they explain in X. 

Because of the unique relationship between weights and loadings in a PLS model, the 
calculation of scores for new data does not simply involve a projection onto the loadings, 
as it does with PCR or PCA (i.e., Tnew= XnewP) . Given new data, Xnew, the scores for 
these new samples are instead calculated using: 

 Tnew= XnewW(PTW)-1 (6-22) 

Like PCR and MLR, prediction of the y-values for new data is accomplished using 
Equation 6-5. 
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Application of PLS 

PLS can be applied to our example problem of developing a model that relates the SFCM 
temperatures to the molten glass level. As before, we will divide the 295 samples 
available for training ten times, leaving a contiguous block of about thirty samples out 
each time. Once again, the cross-validation can be done with the Analysis GUI by 
selecting PLS in the Analysis menu of the main Analysis window. By default, 
PLS_Toolbox uses SIMPLS algorithm for PLS. However, the NIPALS algorithm can be 
performed from the command line, or specified for use in the Analysis window by going 
to Edit/Options in the Analysis window menu when “PLS” is specified under the 
“Analysis” menu. The interface is shown in Figure 6-7, including the variance captured 
table. 

 

Figure 6-7. Analysis window showing PLS model. 

Figure 6-8 shows the RMSECV versus number of LVs for the PLS model. Note how the 
RMSECV goes through an obvious minimum at four LVs, as opposed to the eleven PCs 
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used in the PCR model (Figure 6-6). This is typical of the behavior of PLS relative to 
PCR. Because PLS attempts to find factors that describe variance (like PCR) and achieve 
correlation (like MLR), PLS models tend to “converge” to the MLR solution faster than 
PCR models. For the same number of factors, they also tend to capture more of the 
relevant information in X (i.e., the variance which is predictive of Y), which results in 
minimum RMSECV at a smaller number of factors. 

Recalling our two rules of thumb with regard to selecting the optimal number of factors 
(namely, to only choose additional factors when the RMSECV improves by at least 2%, 
and to choose as few factors as possible), a three-LV PLS model makes a good final 
choice. This choice is also supported by the variance captured in Y as shown in Figure 6-
7. The user can select three LVs for the model by clicking on the third line of the 
variance captured table, and then clicking the Calculate button. 

As mentioned above, there are often factors in PCR models which do not contribute 
positively to the predictive ability of the model (e.g., factors 2, 4, and 5 in our PCR 
example; see Figure 6-6). This happens in PCR because the factors (the PCs) are chosen 
without consideration of how they relate to the predicted variable. This happens much 
less frequently in PLS because the factors (the latent variables) are chosen with regard to 
how correlated the factor scores are to the predicted variable.  

One could form an “altered” PCR model by leaving out these seemingly irrelevant 
factors. The technique of Correlation PCR does this by re-ordering the factors in order of 
Y-block variance captured. Most research results, however, have not shown convincingly 
that this is a good thing to do. Although reordering the factors allows selection of only 
those which provide the most significant Y-block information, it rarely provides a model 
which does as well as a PLS model. In fact, Correlation PCR will only do better when the 
Y-block measurements contain a significant amount of noise or other errors which 
"distract" the PLS algorithm. Interestingly, under these conditions it is also virtually 
impossible to prove that Correlation PCR is doing better.  
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Figure 6-8. RMSECV for PLS on SFCM data. 

We can compare the regression vectors calculated by PLS and PCR (not Correlation 
PCR) with the regression vector calculated by MLR, as shown in Figure 6-9. (In the 
model structure that is saved via the File/Save Model command in the Analysis window, 
the regression vectors are stored in the model.reg field.) It can be seen that the MLR 
regression coefficients vary considerably from variable to variable, switching from 
positive to negative and back several times. This “ringing” in the coefficients is typical of 
models produced by MLR when the problem is ill-conditioned due to the covariance of 
the data. Note how the PLS and PCR models have coefficients that are muchsmoother. In 
fact, the PLS and PCR models make more sense from a physical standpoint. Because of 
the close physical proximity of the temperature sensors in this system, we would expect 
adjacent sensors to respond similarly, and therefore would not expect the relationships 
between adjacent sensors and the level to be opposite of one another, as the MLR model 
coefficients suggest. Also, prior engineering knowledge of the SFCM system predicts 
that the molten glass level changes should have the largest effect on variables 6–8 and 
16–18. These variables have the largest coefficients in the PLS and PCR models, which 
makes good physical sense. In contrast, the largest coefficients in the MLR model are 
where the PLS and PCR coefficients are very close to zero. These results suggest that the 
MLR model might be overfit, in that it is attempting to explain noise in the temperature 
data that is coincidentally correlated to the level. 
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Figure 6-9. Regression coefficients in MLR, PCR, and PLS models of SFCM data. 

Ridge Regression 

Ridge regression (RR), essentially a modification of the MLR method, is another 
technique for dealing with ill-conditioned data. Ridge regression gets its name because a 
constant is added to the “ridge” of the covariance matrix in the process of forming the 
pseudoinverse: 

 X+ =  (XTX + IΘ)-1 XT (6-23) 

Note the difference between this expression of the pseudoinverse and that of the MLR 
method in Equation 6-7. The addition of the constant Θ to the ridge has the effect of 
making a potentially ill-conditioned covariance matrix (XTX) “look” more like the 
identity matrix, which is a perfectly-conditioned matrix. As a result, this addition 
stabilizes the values of the coefficients determined from the regression. It also has the 
effect of shrinking the coefficients (i.e., decreasing their magnitude). It has been shown 
(Draper and Smith, 1981) that the regression vector calculated from ridge regression is 
the least squares solution subject to the constraint that the vector is confined to a sphere 
centered around the origin. Thus, in some sense, RR assumes that the regression 
coefficients are more likely to be small (near zero) than large. Note that it is also possible 
to impose a non-spherical constraint on the regression vector by using a specific diagonal 
matrix instead of the identity matrix in Equation 6-23. This is often useful when one 
knows that certain coefficients are more likely to be close to zero than others. 
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Ridge regression is also used quite often when one is concerned with the values of the 
regression coefficients themselves, rather than in prediction. If one can derive needed 
information from the coefficients themselves, RR  can be an appropriate choice. 

The trick in ridge regression is to determine the optimum value of Θ for developing a 
predictive model. A common statistical method was outlined by Hoerl et al. (1975). It is 
also possible to determine the optimum value through cross-validation.  

Application of Ridge Regression 

As an example of the use of ridge regression, we will now revisit the SFCM data used in 
the examples of PCR and PLS. We will use the PLS_Toolbox functions ridge, which 
uses the method of Hoerl and Kennard, and ridgecv, which uses cross-validation to 
develop RR models. We will consider values of the ridge constant (Θ) from 0 to  0.015 at 
thirty-one different levels, so that we can see the effect of Θ on the coefficients. For 
cross-validation, we will split the data ten ways (please see the function help files or the 
reference manual for input/output specifications). 

» [brr1,theta1] = ridge(mx,my,0.015,31); 
» [brr2,theta2,cumpress] = ridgecv(mx,my,0.015,31,10); 

The regression coefficients are shown as a function of the ridge parameter in Figure 6-10. 
Note how the values shrink as the value of Θ is increased. The value of the ridge 
parameter using the method of Hoerl and Kennard is 0.0074, while the value determined 
using the cross-validation procedure outlined above is 0.0073. The regression coefficients 
are compared with those determined from MLR in Figure 6-11. Note how the regression 
coefficients have been shrunk in RR as compared to MLR, but are still quite similar to 
the MLR solution, in a qualitative sense. 
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Figure 6-10.Value of the regression coefficients as a function of Θ for SFCM data. 

Comparison of Regression Models on SFCM Example 

Of course, in the SFCM example, the real reason for forming the regression models is to 
make predictions of the SFCM level given the temperatures in the event of a failure of the 
level instrument, or to provide a redundant check on the performance of the instrument. 
Thus, the best test of the models is their ability to predict the level given new temperature 
measurements.  

Before comparing the predictive ability of the models, it is useful to review several 
quality measures. In all of the measures considered, we are attempting to estimate the 
average deviation of the model from the data. The root-mean-square error of calibration 
(RMSEC) tells us about the fit of the model to the calibration data. It is defined as: 

 
n

)yŷ(
RMSEC

n

1i

2
ii∑

=

−
=  (6-24) 

where the y i are the values of the predicted variable when all samples are included in the 
model formation and n is the number of calibration samples. RMSEC is a measure of 
how well the model fits the data.  
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Figure 6-11. Regression coefficients in MLR and RR models of SFCM data. 

This is in contrast to the previously mentioned root-mean-square error of cross-validation 
(RMSECV) which is a measure of a model’s ability to predict samples that were not used 
to build the model. The RMSECV can also be defined using Equation 6-24, where the y i 
corresponds to predictions for samples that were not included in the model formulation. 
Another measure that was mentioned in the cross-validation discussion, the Predicted 
Residual Error Sum of Squares (or PRESS), is related to the RMSECV as follows:  

 RMSECVk = PRESSk
n  (6-25) 

where k refers to the number of factors (PCs, LVs) used in the model, and n is the 
number of calibration samples. PRESSk is the sum of squared prediction errors for the 
model which includes k factors. Of course, the exact value of RMSECV depends not only 
on k, but on how the cross-validation test sets were formed. It is also common to calculate 
PRESS, and thus RMSECV, for a “leave one out” cross-validation (i.e., where each 
sample is left out of the model formulation and predicted once). 

The RMSECV and PRESS measures typically refer to cross-validation experiments, 
where the existing calibration data set is split into different training and test sets in an 
effort to assess how a model built using all of the calibration data would perform when 
applied to new data. Alternatively, one could designate a completely independent 
prediction set of samples that have known Y values, so that such an assessment can be 
done directly, In this case, one can calculate a root-mean-square error of prediction 
(RMSEP) when the model is applied to new data. RMSEP is calculated exactly as in 
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Equation 6-24, except that the estimates y i refer to samples in the independent prediction 
set, which were not involved in either model building or cross-validation. 

The MLR, PCR, PLS, and RR models developed for the SFCM example can now be 
compared using the measures just introduced. Predictions can be made in the Analysis 
window by loading new X-block data, then clicking Calculate. The predictions can be 
saved to the workspace (or to a file) by selecting File/Save Prediction. This information 
is summarized in Table 6-1. An independent data set of 200 samples not used for model 
building was used for the calculation of RMSEP. 

Table 6-1. Comparison of RMSEC, RMSECV and RMSEP on MLR, PCR, PLS and RR  
models of SFCM temperature and level data. 

  MLR PCR PLS RR 
 RMSEC     0.0991     0.1059     0.1034     0.0996 
 RMSECV  0.1122   0.1108     0.1098    0.1122 
 RMSEP     0.1496     0.1366     0.1396     0.1471 

Note how the MLR model shows the smallest value for RMSEC, the error of calibration. 
This indicates that, as expected, the MLR model fits the data best. Note, however, from 
the RMSECV that the MLR does not predict the best, even for samples within the 
original calibration data. The PLS model produces the lowest cross-validation error 
(RMSECV). For the prediction on new samples, the PCR model outperforms the other 
models, with PLS a close second. In practice, PCR and PLS generally have similar 
performance; the main advantage of PLS is often computational speed. In addition, PLS 
models generally require fewer factors than PCR models for the same set of data (see 
next section), which has advantages in both model implementation and model 
interpretation. 

It should be evident from the comparison of models that fit and prediction are entirely 
different aspects of a model’s performance. If prediction is the goal, a model should be 
built with this criterion in mind. The calculation of PRESS from a cross-validation 
procedure is one way to measure a model’s predictive ability.  

Detecting and Dealing with Outliers 

Recall that in the previous examples where we used MLR, PCR, PLS and RR to model 
the SFCM data, we started by removing outliers from the data. We’ll now re-work the 
problem from the beginning, with all of the data included. Load the plsdata.mat file 
and start Analysis preset to PLS by typing pls at the prompt. Load the xblock1 and 
yblock1 DataSet Objects into the Analysis window. Select mean-centering for the X-
block by selecting Preprocess/X-block/Mean Center. Calculate a preliminary model by 
pressing Calculate. Select 3 LVs by clicking the 3rd line of the variance captured table, 
and then click Calculate. The Analysis interface should now match the one shown in 
Figure 6-12. 
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Click the Scores button and use the Plot Controls window to make a plot of the Scores 
on LV 2 versus Scores on LV 1. Add axis lines with the Plot Controls window 
View/Axis Lines/All menu. Add 95% confidence limits by checking the box in the Plot 
Controls window. The resulting scores plot should look like Figure 6-13. This scores 
plot is the first indication that there may be unusual samples in the data. We can find out 
more about the sample in the upper left of this scores plot by clicking info in the Plot 
Controls window and then clicking on the point in the plot. Information about the sample 
that corresponds to that point comes up in a separate window, as shown in Figure 6-14. 

 

Figure 6-12. Analysis window showing PLS model of SFCM data. 
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Figure 6-13. Scores plot from SFCM data with outliers included. 

 

Figure 6-14. Information window for sample 73. 

The information window indicates that Sample 73 is indeed unusual, with very large Q 
Residual and T2 values compared to the 95% limits. Thus, plots of all the available PLS 
scores, as well as plots of the sample-wise Hotelling T2 and Q Residual statistics, can be 
quite useful for detecting samples that are unusual due to “extreme” values in their X 
data. Similarly, plots of the available PLS loadings, and variable-wise T2 and Q statistics 
(obtained by clicking on the Loadings button on the Analysis window) can be useful for 
determining unusual X-variables. 

In PLS (and PCR) regression, one can also look for sample outliers in the predicted (Y) 
data, using the Y Studentized Residual versus Leverage plot, which can be made by 
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selecting the proper options in the Plot Controls window. In the example, this plot 
should look like Figure 6-15. Note that, in this plot, the samples that were excluded from 
the original analyses of these data are highlighted, which indicates that they have been 
selected. In order to select samples, first click on the Select button on the Plot Controls 
window, then use the rubber band box on the figure to select them. Multiple selections 
can be made by holding down the shift key. 
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Figure 6-15. Studentized residuals versus leverage for SFCM data.  

Leverage defines the influence that a given sample will have on a model, and is related to 
the Hotelling T2 value. The studentized residual is an indication of the lack of fit of the y-
value of a sample. To “studentize” something means to make it mean zero and unit 
variance. Thus, the X-axis scale on Figure 6-15 can be interpreted as the number of 
standard deviations of error in a sample’s y-value. The upper-most sample, number 167, 
has an error with a standard deviation of greater than 3, which is quite large. This 
suggests that the “known” y-value associated with this sample may be in error, as there is 
no other indication that this sample is unusual (see, for instance, where this sample falls 
on a plot of Q versus T2).  

The right-most sample, number 73, has a very high leverage, but a very low studentized 
Y Residual . Although this sample has a rather unique profile of temperature readings (X-
values), when compared to all the other samples, the PLS model is still able to 
sufficiently predict its level (Y-value). In general, samples with very high leverage also 
tend to have very low calibration residuals, because they have influenced the model so 
greatly.  
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The most unusual sample in this data set is probably number 278, as it has both a very 
high leverage and a high residual. This suggests that the sample could have a lot of “bad” 
influence on the model, due to both its very unique temperature readings (X-values) and 
the relative inability of the PLS model to predict its level (Y-value). This can be checked 
by making a plot of Y CV Residual versus Y Residual using the Plot Controls window. 
The result is shown in Figure 6-16, where a line of slope 1 has been added by executing 
dp at the command line. Sample 278 is the uppermost sample on the plot, and is also the 
sample with the greatest deviation from the line. Not only does this sample have one of 
the largest Y-residuals (distance of the point from the origin in this plot), but it also has 
the largest difference between its calibration residual (where it is included in the model 
formation) and its cross-validation residual (where it is not included in the model 
formation). This result further suggests that this sample does not “fit” well with the rest 
of the data, with respect to both its X-data and its Y-data. Note that it is normal for points 
on this plot to have a slope slightly greater than 1, as samples generally have a smaller 
calibration residual than cross-validation residual.  
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Figure 6-16. Cross-validated Y residual versus Y calibration residual. 

Now that we have identified a number of unusual samples, the question becomes: what 
do we do with them? In this example, the answer is fairly obvious, because we have 
plenty of normal samples and the unusual samples appear to be the result of either 
abnormal conditions in the SFCM or errors in the reference (level) values. This suggests 
that we can delete the samples with little fear that, in doing so, we will eliminate critical 
information from the model. This choice is not always so simple, however. In many 
cases, unusual samples represent perfectly normal process states that are merely 
underrepresented, and the better choice would be retain these samples, and attempt to 
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collect more samples that are similar to them. Generally, the choice of whether or not to 
remove an outlier must be made based not only on the statistics involved but on the 
knowledge and experience of the user. 

In this case, the model can easily be rebuilt without the suspect samples by selecting 
them, as we have already done, then choosing Edit/Exclude Selection in the Plot 
Controls window when the Scores are the active figure. Note that this causes the model 
information to disappear from the main Analysis window, because the data it was based 
on have been edited. The model can now be rebuilt without the suspect data.  

Continuum Regression 

PCR, PLS and MLR have all been unified under the single technique Continuum 
Regression (CR) (Stone and Brooks, 1990; Wise and Ricker, 1993, de Jong, Wise and 
Ricker, 2001). CR is a continuously adjustable technique which encompasses PLS and 
includes PCR and MLR at opposite ends of the continuum, as shown in Figure 6-17. 
When using CR, cross-validation must be done to determine both the number of factors 
and the technique within the continuum that produces the optimum model (i.e., the model 
that predicts most accurately when used with new data).  

Figure 6-17. Relationship between PCR, PLS, MLR and CR. 

There are several interesting implementations of CR. Here we will consider a method that 
is fairly easily understood, though not particularly efficient. The first step in the CR 
method is to perform a singular value decomposition (SVD) on the matrix of predictor 
variables X (m by n) 

 X = U S VT (6-26) 

where U (m by m) and V (n by n) are orthonormal matrices and S (m by n) is diagonal 
(i.e., zero everywhere except on the matrix diagonal). The elements of S are known as the 
singular values, and are placed in S in descending order (i.e., s11 ≥ s22 ≥ s33 and so on). 
The SVD is closely related to PCA. In fact, the eigenvectors or loadings P are identical to 
V, that is: 

 V = P (6-27) 

  PCR  
α  = ∞

MLR 
α  = 0 

PLS  
α = 1 

Continuum Regression
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The relation between the PCA scores T and the SVD model parameters U and S is 

 U S = T (6-28) 

In fact, the PCA model proposed in Equation 5-2 can be written as 

 X = TkPkT + E = UkSkVkT + E (6-29) 

The next step in CR is to form the matrix Sα by taking each of the singular values to the 
desired power, α. The new X block, defined as Xα, is then formed as follows: 

 Xα = U Sα VT (6-30) 

The PLS algorithm described earlier can now be used along with the matrix inverse 
defined by Equation 6-20 to produce a regression vector, r, for any number of latent 
variables desired. That is  

 r = W(PTW)-1(TTT)-1TTy (6-31) 

The regression vector obtained is not properly scaled because of the re-scaled X block. 
Any regression vector, r, can be re-scaled, however, by projecting it onto the SVD basis 
set V and multiplying by the ratios of the singular values used in Equation 6-19 to the 
original singular values calculated in Equation 6-26. Thus: 

 rscl = r V Sscl VT (6-32) 

where 

 Sscl = Sα ./ S (6-33) 

where the symbol “./” indicates term-by-term division of the non-zero elements of the 
singular value matrices. 

The continuum regression algorithm converges, mathematically at least, to the PCR 
solution for large α and to MLR for α = 0. In practice, there are some numerical 
difficulties encountered when taking the singular values to high powers. The CR 
algorithms included in PLS_Toolbox are typically stable up to a power of ~8, depending 
upon the problem. However, at this power, the solution has essentially converged to the 
PCR solution and obtaining a solution for higher powers is of little use. 

The CR algorithm described above can be understood in terms of “stretching” the space 
of the predictor variables. When the singular values are taken to a power greater than 1, 
the resulting matrix Xα is stretched relative to X in such a way the directions of greatest 
variance in X have even greater relative variance in Xα; that is, the rich get richer and the 
poor get poorer. Because PLS attempts to capture variance along with correlation, 
making the X matrix more “directional” causes the PLS algorithm to produce latent 
variables that are more closely aligned with the principal components of the original X. 
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As the power m goes to 0, Xα becomes less directional, with all directions coming closer 
to having equal variance. With no “preferred” direction for capturing variance, the PLS 
algorithm will capture correlation only, producing the MLR solution. 

The application of CR to the SFCM temperature and level data will serve as our example. 
Cross-validation was used to find the optimal model within the CR parameter space. The 
powers investigated spanned the range of 0.25 to 4. The crcvrnd function was used to 
cross-validate using a 10-way split of the data, a single iteration, and twenty latent 
variables as follows (please see reference section for explanation of input/output syntax):  

» powers = 10.^[-1:.05:1]; 
» [press,fiterr,minlvp,b] = crcvrnd(mx,my,10,1,20,powers,1); 

The resulting PRESS surface is plotted in Figure 6-18. Inspection of this PRESS surface 
would probably lead one to select the PLS model originally chosen. There is a clear area 
of good models near the PLS model with four latent variables. 
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Figure 6-18. Continuum Regression cross-validation PRESS surface for SFCM data. 

We can also look at the CR prediction error surface, which is shown in Figure 6-19. Here 
we see that the model with power = 4 and six LVs is a very good model. This model is 
nearly equivalent to our PCR model with six PCs. The very best model on the test set was 
at a power of 0.595 with two LVs. This model had an RMSEP of 0.1362 compared to 
0.1366 for our six-PC PCR model and 0.1396 for our three-LV PLS model. (Although 
this difference is probably not statistically significant, it is consistent with experience.)  
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Much work remains to be done with CR. The example here exemplifies some of the 
problems with selection of a final model. In some instances the selection will be fairly 
clear, and often, the best models are found at powers above or below 1. The crcvrnd 
function can be used to do repeated cross-validations using different orderings of the data 
set. Often this will produce smoother, more interpretable PRESS surfaces. The authors of 
PLS_Toolbox would be very interested in hearing about your experience with CR. 
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Figure 6-19. Continuum Regression prediction PRESS surface for SFCM data. 
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7. Advanced Preprocessing 
So far, we have dealt with only basic preprocessing of data for use in PCA and 
regression, including centering and variance scaling. Often, however, it is useful to do 
other types of preprocessing, such as taking derivatives of spectra. Preprocessing is, in 
general, the modification of data done before building a model or otherwise analyzing 
those data. The purposes of preprocessing are to linearize the response of the variables 
and to remove extraneous sources of variation (variance) which are not of interest in the 
analysis. Linearization is often important because (1) many modeling methods expect 
linear response and, (2) in general, linear responses are easier to model than non-linear 
ones. Similarly, interfering sources of variance can cause increased difficulty in 
modeling. Interfering variance appears in almost all real data because of systematic errors 
present in experiments. This unwanted variance will require the model to work harder 
(expend degrees of freedom) to isolate the variance of interest from the interfering 
variance. 

A variety of preprocessing methods are available in PLS_Toolbox. This chapter describes 
some basic information on the methods available to the user both in the Preprocessing 
GUI and from the corresponding command line functions. Advanced users are 
encouraged to read the help documentation for the command line functions and for the 
functions referenced under "See also" therein. 

Preprocessing GUI 

Many tools in PLS_Toolbox allow for a number of advanced preprocessing techniques to 
be used through the preprocess function. This can be accessed from the Analysis 
window by selecting Preprocess/X-Block/Custom or Y-Block/Custom, which brings up 
the interface shown in Figure 7-1. Techniques may be selected from the list on the left 
and moved into the list to execute on the right. Some techniques have adjustable 
parameters which can be viewed and modified by selecting the preprocessing step in the 
Selected Methods list and clicking on Settings…. The settings for the method will be 
displayed in a dialog box. As an example, the Savitzky-Golay derivative preprocessing 
settings consist of the window width, polynomial order, and derivative order. In 
Autoscale an optional scaling offset can be used to avoid “blowing up” the noise on 
variables with very little variance.  
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Figure 7-1. Advanced Preprocessing interface. 

It is also important to specify the order in which preprocessing steps are to be done. For 
instance, in some pattern recognition problems, it would be natural to normalize the 
responses to vectors of unit length, then autoscale the results prior to performing PCA. 
The order of preprocessing steps can be changed by selecting a step in the Selected 
Methods list and clicking the up or down buttons to change the method's position in the 
list. See the discussion below for more information on order in preprocessing. 

The preprocess function can also be invoked from the command line as follows:  

» s = preprocess; 

which will bring up the interface shown in Figure 7-1. After the preprocessing steps are 
selected and parameterized, click OK to close the interface. A structure describing the 
preprocessing will be stored in s. This structure may be passed to command line calls for 
tools such as pca and pls as part of their options structure, allowing for the easy 
integration of advanced preprocessing with user-defined scripts. 

 

Notes about Preprocessing Order 

Given the wide variety of preprocessing options available and the goals of each, it is of 
particular interest to consider the order in which preprocessing is applied. This order is 
completely customizable by the user, but there are some basic rules to follow.  

In general, it is desirable to perform "row-wise" (sample-based) methods prior to any 
"column-wise" (variable-based) methods.  
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A row-wise method is one that acts on each sample one at a time (see, for example, 
normalization and derivatization, below). These methods are typically used to remove 
unwanted variance from individual samples. The effect on any individual sample is 
independent of the other samples in the data. 

In contrast, column-wise methods act on variables of the data (see, for example, centering 
and scaling). These methods numerically prepare the data for modeling and are thus 
usually the last methods applied before modeling. These methods often assume that any 
variance in the data is of interest and use and, as such, is important. 

During the following discussion, notes will be included with each topic when there is a 
deviation or special case in the order that it might be applied. 

 

Noise, Offset, and Baseline Filtering 

A variety of methods exist to remove high- or low-frequency interferences (where 
frequency is defined as change from variable to variable). These interferences, often 
described as noise (high frequency) or background (low frequency) are common in many 
measurements but can often be corrected by taking advantage of the relationship between 
variables in a data set. In many cases, variables which are "next to" each other in the data 
matrix (adjacent columns) are related to each other and contain similar information. 
These noise, offset, and baseline filtering methods utilize this relationship to remove 
these types of interferences.  

Noise, offset, and baseline filtering methods are usually performed fairly early in the 
sequence of preprocessing methods. The signal being removed from each sample is 
assumed to be only interference and is generally not useful for numerical analyses. One 
exception to this is when normalization is also being performed. In these cases, it 
sometimes occurs that a background or offset being removed is fairly constant in 
response and is, therefore, useful in correcting for scaling errors. For more information, 
see the normalization methods described below. 

Note that these methods are not relevant when working with variables which do not have 
this similarity, such as process variables, genetic markers, or other highly selective or 
discrete variables. For such variables, use of multivariate filtering methods (described 
later) may be of use for removing interferences. 

Smoothing (SavGol) 

Smoothing is a low-pass filter used for removing high-frequency noise from samples. 
Often used on spectra, this operation is done separately on each row of the data matrix 
and acts on adjacent variables. Smoothing assumes that variables which are near to each 
other in the data matrix (i.e., adjacent columns) are related to each other and contain 
similar information which can be averaged together to reduce noise without significant 
loss of  the signal of interest. 
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The smoothing implemented in PLS_Toolbox is the Savitzky-Golay (SavGol) algorithm 
(Savitzky and Golay, 1964). The algorithm essentially fits individual polynomials to 
windows around each point in the spectrum. These polynomials are then used to smooth 
the data. The algorithm requires selection of both the size of the window (filter width) 
and the order of the polynomial. The larger the window and lower the polynomial order, 
the more smoothing that occurs. Typically, the window should be on the order of, or 
smaller than, the nominal width of non-noise features.. Note that the same algorithm is 
used for derivatives (see below) and can be converted from one into the other by 
changing the derivative order setting. 

From the command line, this method is performed using the savgol function. 

Derivative (SavGol) 

Derivatives are a common method used to remove unimportant baseline signal from 
samples by taking the derivative of the measured responses with respect to the variable 
number (index) or other relevant axis scale (wavelength, wavenumbers, etc.) Derivatives 
are a form of high-pass filter and frequency-dependent scaling and are often used when 
lower-frequency (i.e., smooth and broad) features such as baselines are interferences and 
higher-frequency (i.e., sharp and narrow) features contain the signal of interest. This 
method should be used only when the variables are strongly related to each other and 
adjacent variables contain similar correlated signal. 

The simplest form of derivative is a point-difference first derivative, in which each 
variable (point) in a sample is subtracted from its immediate neighboring variable (point). 
This subtraction removes the signal which is the same between the two variables and 
leaves only the part of the signal which is different. When performed on an entire sample, 
a first derivative effectively removes any offset from the sample and de-emphasizes 
lower-frequency signals. A second derivative would be calculated by repeating the 
process, which will further accentuate higher-frequency features. 

Because derivatives de-emphasize lower frequencies and emphasize higher frequencies, 
they tend to accentuate noise (high frequency signal). For this reason, the Savitzky-Golay 
algorithm is often used to simultaneously smooth the data as it takes the derivative, 
greatly improving the utility of derivatized data. For details on the Savitzky-Golay 
algorithm, see the description for the smoothing method, above. 

As with smoothing, the Savitzky-Golay derivativization algorithm requires selection of 
the size of the window (filter width), the order of the polynomial, and the order of the 
derivative. The larger the window and lower the polynomial order, the more smoothing 
that occurs. Typically, the window should be on the order of, or smaller than, the nominal 
width of non-noise features which should not be smoothed. Note that the same algorithm 
is used for simple smoothing (see above) and can be converted from one into the other by 
changing the derivative order setting. 

An important aspect of derivatives is that they are linear operators, and as such, do not 
affect any linear relationships within the data. For instance, taking the derivative of 
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absorbance spectra does not change the linear relationship between those data and 
chemical concentrations.  

Figure 7-2 shows the results of first and second derivativization on the  near-IR spectra of 
corn. Notice that taking the first derivative has removed the predominant background 
variation from the original data. The smaller variations remaining are due to the chemical 
differences between samples. 

 

Figure 7-2. NIR spectra of corn (A), the first derivative of the spectra (B), and the second 
derivative of the spectra (C).  

Note that at the end-points (and at excluded regions) of the variables, limited information 
is available to fit a polynomial. The SavGol algorithm approximates the polynomial in 
these regions, which may introduce some unusual features, particularly when the 
variable-to-variable slope is large near an edge. In these cases, it is preferable to exclude 
some variables (e.g., the same number of variables as the window width) at the edges. 

From the command line, this method is performed using the savgol function. 

Detrend 
In cases where a constant, linear, or curved offset is present, the Detrend method can 
sometimes be used to remove these effects (see, for example, Barnes et al., 1989). 
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Detrend fits a polynomial of a given order to the entire sample and simply subtracts this 
polynomial. Note that this algorithm does not fit only baseline points in the sample, but 
fits the polynomial to all points, baseline and signal. As such, this method is very simple 
to use, but tends to work only when the largest source of signal in each sample is  
background interference. 

In measurements where the variation of interest (net analyte signal) is a reasonably 
significant portion of the variance, Detrend tends to remove variations which are useful to 
modeling and may even create non-linear responses from otherwise linear ones. In 
addition, the fact that an individual polynomial is fit to each spectrum may increase the 
amount of interfering variance in a data set. Due to these reasons, use of Detrend is 
recommended only when the overall signal is dominated by backgrounds which are 
generally the same shape and are not greatly influenced by chemical or physical 
processes of interest. In general, derivatives tend to be far more amenable to use before 
multivariate analysis. 

Figure 7-3 shows the effect of Detrend on the corn near-IR data. Note that the general 
linear offset is removed from all spectra, giving a mean intensity of zero for each 
spectrum. 

 

Figure 7-3. The effect of first-order detrending on the corn near-IR spectral data. The 
original data are shown in (A) and the detrended data in (B).  

 



173 

The single setting for Detrend is the order of polynomial to fit to the data. 

From the command line, there is no specific function to perform Detrend (although there 
is a MATLAB function of the same name). However, this method can be performed 
using the baseline function by indicating that all points in the spectrum are to be used in 
the baseline calculation. 

Baseline (Weighted Least Squares) 

Another method for automatically removing baseline offsets from data is the Baseline 
(Weighted Least Squares) preprocessing method. This method is typically used in 
spectroscopic applications where the signal in some variables is due only to baseline 
(background). These variables serve as good references for how much background should 
be removed from nearby variables. The Weighted Least Squares (WLS) baseline 
algorithm uses an automatic approach to determine which points are most likely due to 
baseline alone. It does this by iteratively fitting a baseline to each spectrum and 
determining which variables are clearly above the baseline (i.e., signal) and which are 
below the baseline. The points below the baseline are assumed to be more significant in 
fitting the baseline to the spectrum. This method is also called asymmetric weighted least 
squares. The net effect is an automatic removal of background while avoiding the 
creation of highly negative peaks. 

Typically, the baseline is approximated by some low-order polynomial (adjustable 
through the settings), but a specific baseline reference (or even better, multiple baseline 
references) can be supplied. These references are referred to as the baseline "basis." 
When specific references are provided as the basis, the background will be removed by 
subtracting some amount of each of these references to obtain a low background result 
without negative peaks. 

When using a polynomial to approximate the baseline, care should be taken in selecting 
the order of the polynomial. It is possible to introduce additional unwanted variance in a 
data set by using a polynomial of larger order (e.g., greater than 2) particularly if a 
polynomial gives a poor approximation of the background shape. This can increase the 
rank of a data matrix. In general, baseline subtraction in this manner is not as numerically 
safe as using derivatives, although the interpretation of the resulting spectra and loadings 
(for example) may be easier. 

There are a number of settings which can be used to modify the behavior of the WLS 
Baseline method. At the "Novice" user level (see User Level menu in the WLS Baseline 
settings window), the order of the polynomial can be selected or a basis (reference 
background spectra) can be loaded. If a basis is loaded, the polynomial order setting is 
ignored. 

At the "Intermediate" user level, several additional settings can be modified including the 
selection of two different weight modes, various settings for the weight modes, and the 
"trbflag" which allows fitting of a baseline to either the top or the bottom of data (top is 
used when peaks are negative-going from an overall baseline shape). In addition, several 
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settings for ending criteria can be changed. At the "Advanced" user level, additional 
advanced settings can be accessed, if desired. See the wlsbaseline function for more 
information on the intermediate and advanced baseline options. 

An example of the WLS Baseline method is shown in Figure 7-4. The top plot shows the 
original spectra with obvious, significant baseline contributions. The bottom plot shows 
the same spectra following WLS Baseline application using a second-order polynomial 
baseline. Although some baseline features remain after baselining, the narrow Raman 
features are much more significant contributor to the remaining signal. 

Figure 7-4. Effect of Weighted Least Squares (WLS) Baselining on Raman spectra. The 
original data (top plot) and baseline corrected data (bottom plot) are shown.  

From the command line, this method is performed using the wlsbaseline function. 
There is also a method called baseline which can be used to manually select the 
baseline points that will be used to fit a polynomial to each spectrum. The manual 
selection method is faster and less prone to introduction of variance, but requires more 
knowledge on the part of the user as to what areas of the spectra are truly baseline. In 
addition, there is a windowed version of the WLS baseline algorithm called baselinew. 
This algorithm fits an individual polynomial to multiple windows across a spectrum and 
is better at handling unusually shaped baselines, but requires the selection of an 
appropriate window size. 
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Sample Normalization 

In many analytical methods, the variables measured for a given sample are subject to 
overall scaling or gain effects. That is, all (or maybe just a portion of) the variables 
measured for a given sample are increased or decreased from their true value by a 
multiplicative factor. Each sample can, in these situations, experience a different level of 
multiplicative scaling.  

In spectroscopic applications, scaling differences arise from pathlength effects, scattering 
effects, source or detector variations, or other general instrumental sensitivity effects (see, 
for example, Martens and Næs, 1989). Similar effects can be seen in other measurement 
systems due to physical or chemical effects (e.g., decreased activity of a contrast reagent 
or physical positioning of a sample relative to a sensor). In these cases, it is often the 
relative value of variables which should be used when doing multivariate modeling rather 
than the absolute measured value. Essentially, one attempts to use an internal standard or 
other pseudo-constant reference value to correct for the scaling effects. 

The sample normalization preprocessing methods attempt to correct for these kinds of 
effects by identifying some aspect of each sample which should be essentially constant 
from one sample to the next, and correcting the scaling of all variables based on this 
characteristic. The ability of a normalization method to correct for multiplicative effects 
depends on how well one can separate the scaling effects which are due to properties of 
interest (e.g., concentration) from the interfering systematic effects. 

Normalization also helps give all samples an equal impact on the model. Without 
normalization, some samples may have such severe multiplicative scaling effects that 
they will not be significant contributors to the variance and, as a result, will not be 
considered important by many multivariate techniques. 

When creating discriminant analysis models such as PLS-DA or SIMCA models, 
normalization is done if the relationship between variables, and not the absolute 
magnitude of the response,  is the most important aspect of the data for identifying a 
species (e.g., the concentration of a chemical isn't important, just the fact that it is there in 
a detectable quantity). Use of normalization in these conditions should be considered 
after evaluating how the variables' response changes for the different classes of interest. 
Models with and without normalization should be compared. 

Typically, normalization should be performed before any centering or scaling or other 
column-wise preprocessing steps and after baseline or offset removal (see above 
regarding these preprocessing methods). The presence of baseline or offsets can impede 
correction of multiplicative effects. The effect of normalization prior to background 
removal will, in these cases, not improve model results and may deteriorate model 
performance. 

One exception to this guideline of preprocessing order is when the baseline or 
background is very consistent from sample to sample and, therefore, provides a very 
useful reference for normalization. This can sometimes be seen in near-infrared 
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spectroscopy in the cases where the overall background shape is due to general solvent or 
matrix vibrations. In these cases, normalization before background subtraction may 
provide improved models. In any case, cross-validation results can be compared for 
models with the normalization and background removal steps in either order and the best 
selected. 

A second exception is when normalization is used after a scaling step (such as 
autoscaling). This should be used when autoscaling emphasizes features which may be 
useful in normalization. This reversal of normalization and scaling is sometimes done in 
discriminant analysis applications. 

Normalize 

Simple normalization of each sample is a common approach to the multiplicative scaling 
problem. The Normalize preprocessing method calculates one of several different metrics 
using all the variables of each sample. Possibilities include: 

 

Name Description Equation* 

1-Norm Normalize to (divide each variable by) the 
sum of the absolute value of all variables for 
the given sample. Returns a vector with unit 
area (area = 1) "under the curve." 

wi = xi, j
j=1

n

∑  

2-Norm Normalize to the sum of the squared value of 
all variables for the given sample. Returns a 
vector of unit length (length = 1). A form of 
weighted normalization where larger values 
are weighted more heavily in the scaling. 

wi = xi, j
2

j=1

n

∑  

Inf-Norm Normalize to the maximum value observed 
for all variables for the given sample. Returns 
a vector with unit maximum value. Weighted 
normalization where only the largest value is 
considered in the scaling. 

wi = Max(x i )  

* Where, in each case, wi is the normalization weight for sample i, xi is the vector of 
observed values for the given sample, j is the variable number, and n is the total number 

of variables (columns of x).  

The weight calculated for a given sample is then used to calculate the normalized sample, 
xi,norm, using: 

 x i,norm = x iwi
−1  (7-1) 
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An example using the 1-norm on near infrared spectra is shown in Figure 7-5. These 
spectra were measured as 20 replicates of 5 synthetic mixtures of gluten and starch 
(Martens, Nielsen, and Engelsen, 2003) In the original data (top plot), the five 
concentrations of gluten and starch are not discernable because of multiplicative and 
baseline effects among the 20 replicate measurements of each mixture. After 
normalization using a 1-norm (bottom plot), the five mixtures are clearly observed in 
groups of 20 replicate measurements each. 

 

 

Figure 7-5. Effect of normalization on near-IR spectra of five synthetic gluten and starch 
mixtures. Original spectra (top plot) and spectra after 1-norm normalization (bottom plot) 

are shown.  

From the Preprocessing GUI, the only setting associated with this method is the type of 
normalization (1-norm, 2-norm or inf-norm). There is currently no option to perform this 
normalization based on anything other than all selected variables. 

From the command line, this method is performed using the normaliz function (note the 
unusual spelling of the function). 
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SNV (Standard Normal Variate) 

Unlike the simple 1-Norm Normalize described above, the Standard Normal Variate 
(SNV) normalization method is a weighted normalization (i.e., not all points contribute to 
the normalization equally). SNV calculates the standard deviation of all the pooled 
variables for the given sample (see for example Barnes et al., 1989). The entire sample is 
then normalized by this value, thus giving the sample a unit standard deviation (s = 1). 
Note that this procedure also includes a zero-order detrend (subtraction of the individual 
mean value from each spectrum - see discussion of detrending, above), and also that this 
is different from mean centering (described later). The equations used by the algorithm 
are the mean and standard deviation equations: 

 xi =
xi, j

j=1

n

∑
n

 (7-2) 

 
  
wi =

xi, j − xi( )2
j=1

n

∑
(n −1)

+ δ −1  (7-3) 

where n is the number of variables, xi,j, is the value of the jth variable for the ith sample, 
and δ is a user-definable offset. The user-definable offset can be used to avoid over-
normalizing samples which have near zero standard deviation. The default value for this 
offset is zero, indicating that samples will be normalized by their unweighted standard 
deviation. The selection of δ is dependent on the scale of the variables. A setting near the 
expected noise level (in the variables' units) is a good approximation. 

This normalization approach is weighted towards considering the values that deviate 
from the individual sample mean more heavily than values near the mean. Consider the 
example Raman spectrum in Figure 7-6. The horizontal line at intensity 0.73 indicates the 
mean of the spectrum. The dashed lines at 1.38 and 0.08 indicate one standard deviation 
away from the mean. In general, the normalization weighting for this sample is driven by 
how far all the points deviate from the mean of 0.73. Considering the square term in 
equation 7-3 and the histogram on the left of Figure 7-6, it is clear that the high intensity 
points will contribute greatly to this normalization. 
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Figure 7-6. Example Raman spectrum (right plot) and corresponding intensity histogram 
(left plot). The mean of the spectrum is shown as a dashed line at intensity 0.73; one 

standard deviation above and below this mean are shown at intensities 1.38 and 0.08 and 
indicated by the arrow.  

This approach is a very empirical normalization method in that one seldom expects that 
variables for a given sample should deviate about their mean in a normal distribution with 
unit variance (except in the case where the primary contribution to most of the variables 
is noise and the variables are all in the same units). When much of the signal in a sample 
is the same in all samples, this method can do very well. However, in cases where the 
overall signal changes significantly from sample to sample, problems may occur. In fact, 
it is quite possible that this normalization can lead to non-linear responses to what were 
otherwise linear responses. SNV should be carefully compared to other normalization 
methods for quantitative models.  

Figure 7-7 shows the result of SNV on the gluten and starch mixtures described earlier. 
Comparing the SNV results to the original spectra and 1-norm spectra shown in Figure 7-
5, it is obvious that SNV gives tighter groupings of the replicate measurements. In fact, 
SNV was originally developed for NIR data of this sort, and it behaves well with this 
kind of response. 
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Figure 7-7. Effect of SNV normalization on near-IR spectra measured of five synthetic 
gluten and starch mixtures.  

From the Preprocessing GUI, the only setting associated with this method is the offset. 
There is currently no option to perform this normalization based on anything other than 
all selected variables. 

From the command line, this method is performed using the snv function. 

MSC (mean) 

Multiplicative signal correction (MSC) is a relatively simple processing step that attempts 
to account for scaling effects and offset (baseline) effects (Martens and Næs, 1989). This 
correction is achieved by regressing a measured spectrum against a reference spectrum 
and then correcting the measured spectrum using the slope (and possibly intercept) of this 
fit. Specifically, MSC follows this procedure: Define x as a column vector corresponding 
to a spectrum to be standardized and r as a vector corresponding to the reference 
spectrum (often this is the mean spectrum of the calibration data set). The vectors are 
most often mean-centered according to: 

 xc  = x - x1  (7-4) 

 rc  = r - r1  (7-5) 
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where xc and rc are the mean centered vectors, x  and r  are the respective means, and 1 
is a vector of ones. The unknown multiplicative factor b is determined using : 

 b = c cr x  (7-6) 

 T -1 Tb = ( )c c c cr r r x  (7-7) 

and the corrected spectrum x̂  is then given by: 

 ˆ = /b + rcx x 1  (7-8) 

Figure 7-8 shows an example of MSC using NIR spectra of synthetic gasoline samples 
with added baseline and scaling effects. The spectra with artificial baseline and scaling 
effects are shown in the top plot. The corrected spectra are shown in the bottom plot. The 
corrected spectra were brought to within 0.03 absorbance units of the original spectra (not 
shown). 
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Figure 7-8. Example of Multiplicative Scatter Correction of artificial baseline and scaling 
effects. 
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The simulated baseline addition and subsequent correction can be done using the 
following commands:  
 
» bspec = spec1.data(21:30,:); 
» for i = 1:10, bspec(i,:) = bspec(i,:)*rand(1) + randn(1); end 
» [sx,alpha,beta] = mscorr(bspec,mean(spec1.data(1:20,:))); 

The first line creates a matrix of ten spectra. The second multiplies them by a random 
number between 0 and 1 and adds a random offset. The function mscorr is then used to 
correct the spectra using the mean of the first twenty spectra as the reference. The outputs 
of mscorr are the corrected spectra (sx), and the intercepts (alpha), and slope (beta) 
for the fit of each spectrum to the reference.  

From the Preprocessing GUI, there are two settings which can be modified: intercept 
and spectral mode. The intercept option controls whether or not the intercept (i.e., r  in 
equation 7-8) is used. The spectral mode setting defaults to 2 and can only be modified 
when x is a multiway matrix. This setting defines the data mode which is associated with 
the spectral dimension (i.e., the mode which should be used in the regression). There is 
currently no option to perform this normalization based on anything other than all 
selected variables. 

From the command line, this method is performed using the mscorr function. 

 

Simple Mathematical Operations 

Two preprocessing methods involve simple mathematical operations which are used to 
linearize or otherwise modify certain kinds of data. 

Absolute Value 

The absolute value method is used to remove any sign information from the data. 
Although unusual, this method may be useful following a derivative or other method 
which creates negative values. Such correction can allow the use of non-negativity 
constraints, or simply improve interpretability of derivatized spectra. It should be noted, 
however, that an absolute value following any method which centers data (such as mean- 
or median-centering) may create a non-linear response and complicate modeling.  

There are no settings associated with this preprocessing method. The command line 
function to perform this operation is the MATLAB command abs. 

Log10 

A base 10 logarithm (that is, Xp = log10 X ) can be used whenever the response of the 
data is linear to the function 10X. Note that negative values will become undefined values 
(NaN = Not a Number). Most modeling algorithms will attempt to replace these values 
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with their least-biasing value. As such, the use of an absolute value preprocessing step 
prior to a Log10 step may be necessary to avoid problems during modeling. 

There are no settings associated with this preprocessing method. The command line 
function to perform this operation is the MATLAB command log10. 

 

Variable Centering 

As discussed previously in this tutorial, many preprocessing methods are based on the 
variance in the data. Such techniques should generally be provided with data which are 
centered relative to some reference point. Centering is generically defined as 

 Xc = X − 1x  (7-9) 

where  x  is a vector representing the reference point for each variable,  1  is a column-
vector of ones, and Xc represents the centered data. Often the reference point is the mean 
of the data. Interpretation of loadings and samples from models built on centered data is 
done relative to this reference point. For example, when centering is used before 
calculating a PCA model, the resultant eigenvalues can be interpreted as variance 
captured by each principal component. Without centering, the eigenvalues include both 
variance and the sum-squared mean of each variable. 

In most cases, centering and/or scaling (see next section) will be the last method in a 
series of preprocessing methods. When other preprocessing methods are being used, they 
are usually performed prior to a centering and/or scaling method. 

Mean-Center 

One of the most common preprocessing methods, mean-centering calculates the mean of 
each column and subtracts this from the column. Another way of interpreting mean-
centered data is that, after mean-centering, each row of the mean-centered data includes 
only how that row differs from the average sample in the original data matrix. 

In the Preprocessing GUI, this method has no adjustable settings. From the command 
line, this method is achieved using the mncn function. 

For more information on the use of mean-centering, see the discussion on Principal 
Components Analysis in Chapter 5. 

Median-Center 

The median-centering preprocessing method is very similar to mean-centering except that 
the reference point is the median of each column rather than the mean. This is considered 
one of the "robust" preprocessing methods in that it is not as influenced by outliers 
(unusual samples) in the data. 
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In the Preprocessing GUI, this method has no adjustable settings. From the command 
line, this method is performed using the medcn function. 

 

Variable Scaling 

Variable scaling is another very common method used with multivariate analysis 
techniques. Many techniques assume that the magnitude of a measurement is proportional 
to its importance and that the level of noise is similar in all variables. When variables 
have significantly different scales simply because they are in different units, the 
magnitude of the values is not necessarily proportional to the information content. 
Likewise, scale is also an issue when some variables contain more noise than other 
variables.  

Variable scaling helps address these problems by scaling each variable (column) of a data 
matrix by some value. The scaling for each variable is presumed to give that variable's 
information content an equal standing with the other variables. In general this is 
performed by 

 XS = XS  (7-10) 

where S is a diagonal matrix of the scaling factors and XS is a matrix of the scaled data. 
Note that in some cases, scaling will be combined with a centering step, described above. 

If scaling is being used, it will be, in general, the final method applied prior to model 
calculation. 

Autoscale 

This is an exceptionally common preprocessing method which uses mean-centering 
followed by dividing each column (variable) by the standard deviation of the column. 
That is, the diagonal of the matrix S in equation 7-10 is equal to the inverse of the 
standard deviation for each column. The result is that each column of XS has a mean of 
zero and a standard deviation of one. 

This approach is a valid approach to correcting for different variable scaling and units if 
the predominant source of variance in each variable is signal rather than noise. Under 
these conditions, each variable will be scaled such that its useful signal has an equal 
footing with other variables' signal. However, if a given variable has significant 
contributions from noise (i.e., a low signal-to-noise ratio) or has a standard deviation near 
zero, then autoscaling will cause this variable's noise to have an equal footing with the 
signal in other variables. This variable may then adversely influence the model. Under 
these conditions, excluding such variables or using the offset parameter (described 
below) is recommended. 

Autoscaling includes an adjustable parameter "offset" which is added to each column's 
standard deviation prior to scaling. When offset is non-zero, the diagonal of the matrix S 
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in equation 7-10 is equal to (s + offset)-1 where s is the vector of standard deviations for 
each column of X. The offset is useful for de-emphasizing variables which have a 
standard deviation near zero. By setting the offset to some small value, variables which 
have standard deviations near or at that level are not as heavily up-scaled. This 
effectively reduces their influence on a model. The exact level for the offset is largely 
dependent on the scale and noise level of the data. The default value of offset is zero. 

In the Preprocessing GUI, this method has one adjustable setting for the scaling offset. 
From the command line, this method is performed using the auto function. 

For more information on the use of autoscaling, see the discussion on Principal 
Components Analysis in Chapter 5. 

Group Scale 

Similar to autoscaling, group scaling performs scaling based on standard deviations. 
Group scaling is often used when the data consist of several equal-sized blocks of 
variables. Each block contains variables in some given unit of measure, but different 
blocks use different units. This kind of situation occurs in Multiway Principal 
Components Analysis (MPCA). 

Group scale is performed by splitting the variables into a predefined number of equally-
sized blocks and scaling each block by the grand mean of their standard deviations. For 
each block, the standard deviations for each variable in a block are calculated and the 
mean of those standard deviations is used to scale all columns in the block. The same 
procedure is repeated for each block of variables. The group scale method does assume 
that all blocks have an equal number of columns. Group scaling when different numbers 
of variables are in each group can only be done by hand at the MATLAB command line. 

In the Preprocessing GUI, this method has one adjustable parameter indicating the 
number of blocks to split the variables into. If set to zero, the GUI will attempt to infer 
the number of blocks from the size of the original data (if a three-way matrix). From the 
command line, this method is performed using the gscale function. 

Log Decay Scaling 

Log decay scaling is typically used in Mass Spectrometry (MS) and is a first-principle 
alternative to autoscaling for MS data. The scaling is based on the assumption that, in 
some types of instrumentation, the sensitivity of the instrument is roughly logarithmically 
proportional to the size of the mass fragment. The larger the mass, the less sensitive the 
instrument and the lower the counts for the given mass. Log decay scaling attempts to 
correct for this insensitivity to larger masses by scaling each mass by a continuously 
decreasing log function of the form: 

 /i n
is e τ−=  (7-11) 
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where si is the scaling for variable i (sorted in order of increasing mass), n is the total 
number of variables and τ (tau) is an adjustable parameter defining the differential scaling 
of early masses to later masses. The smaller the value for τ, the more the larger masses 
are up-scaled relative to the smaller masses. Selection of τ largely depends on the 
instrumentation and the insensitivity to larger masses. The default value for τ is 0.3. 

Note that, unlike autoscaling, this method does not mean-center the data. 

In the Preprocessing GUI, this method allows for adjustment of τ in the settings. From 
the command line, this method is performed using the logdecay function. 

Sqrt Mean Scale 

In many cases, the goal of scaling is to adjust the magnitude of each variable so that the 
level of noise is equal in all variables. In cases where the noise is approximately 
proportional to the square root of the signal in each variable, the square root mean scaling 
(sqrt mean scale) approach can be used. This method scales each variable by the square 
root of the mean of the variable. If the predominant noise source is truly proportional to 
the square root of the signal, this effectively corrects all variables to the same level of 
noise.  

This method has been used effectively to correct Mass Spectra (Keenan and Kotula, 
2004) but is also valid in other spectroscopies or measurements where noise is likely to 
be shot-noise limited (low light luminescence and Raman spectroscopies, for example). 
Note that, unlike autoscaling, this method does not mean-center the data. 

In the Preprocessing GUI, there are no adjustable parameters. There is no equivalent 
method at the command line, but this scaling can be emulated using the commands: 
 
>> [junk,mx] = mncn(x);  
>> sx = sqrt(mx);  
>> data = scale(x,sx*0,sx); 

 

Multiway Centering and Scaling 

When handling multi-way data (that is, data sets which have three or more modes), there 
are two specialized centering and scaling methods which can be used: multiway center 
and multiway scale. The details of how these methods work is beyond the scope of this 
chapter but details can be obtained from the multiway methods chapter (Chapter 10) and 
from the help for the npreprocess command. The basic information on these methods is 
given below.  

Note that when used together, multiway centering and scaling may need to be done 
iteratively if a true convergence is to be reached. The following general guidelines can be 
applied: 
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1. Centering across one mode tends to disturb scaling across all modes (except for 
particular scaling where the scaling is independent of the level/offset/center, such 
as in autoscaling.) 

2. Scaling within a mode disturbs centering across the same mode but not across 
other modes. 

3. Scaling affects scaling in other modes. 

More details of these considerations can be found in Bro and Smilde, 2003. 

Multiway Center 

Performs centering across one or more modes of a multiway array. The result is a matrix 
which has a mean of zero for the given mode(s). In the Preprocessing GUI, the only 
setting defines which mode or modes should be centered. The npreprocess function can 
be used to perform this method at the command line. 

Multiway Scale 

Performs scaling of one or more modes of a multiway array. In the Preprocessing GUI, 
the only setting defines which mode or modes should be scaled. The npreprocess 
function can be used to perform this method at the command line. 

 

Multivariate Filtering 

In some cases, there is insufficient selectivity in the variables to easily remove things like 
backgrounds or other signals which are interferences to a multivariate model. In these 
cases, using multivariate filtering methods before model calibration may help simplify 
the end model. Multivariate filters identify some unwanted covariance structure (i.e., how 
variables change together) and remove these sources of variance from the data prior to 
calibration or prediction. In a simple way, these filters can be viewed as pattern filters in 
that they remove certain patterns among the variables. The resulting data contain only 
those covariance patterns which passed through the filter and are, ideally, useful or 
interesting in the context of the model. 

Identification of the patterns to filter can be based on a number of different criteria. The 
full discussion of multivariate filtering methods is outside the scope of this chapter, but it 
is worth noting that these methods can be very powerful for calibration transfer and 
instrument standardization problems, as well as for filtering out other differences between 
measurements which should otherwise be the same (e.g., differences in the same sample 
due to changes with time, or differences within a class of items being used in a 
classification problem).  

One common method to identify the multivariate filter "target" uses the Y-block of a 
multivariate regression problem. This Y-block contains the quantitative (or qualitative) 
values for each sample and, theoretically, samples with the same value in the Y-block 
should have the same covariance structure (i.e., they should be similar in a multivariate 
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fashion). A multivariate filter can be created which attempts to remove differences 
between samples with similar y-values. This filter should reduce the complexity of any 
regression model needed to predict these data. Put in mathematical terms, the multivariate 
filter removes signals in the X-block (measured responses) which are orthogonal to the 
Y-block (property of interest). 

Two multivariate filtering methods are provided in the Preprocessing GUI: Orthogonal 
Signal Correction (OSC) and Generalized Least Squares Weighting (GLSW). In the 
context of the Preprocessing GUI, both methods require a Y-block and are thus only 
relevant in the context of regression models. Additionally, as of the current version of 
PLS_Toolbox, the GUI access to these functions only permits their use to orthogonalize 
to a Y-block, not for calibration transfer applications. From the command line, however, 
both of these functions can also be used for calibration transfer or other filtering tasks. 
For more information on these uses, please see the calibration transfer and instrument 
standardization chapter of this manual. 

OSC (Orthogonal Signal Correction) 

Orthogonal Signal Correction (Sjöblom et al., 1998) removes variance in the X-block 
which is orthogonal to the Y-block. Such variance is identified as some number of factors 
(described as components) of the X-block which have been made orthogonal to the Y-
block. When applying this preprocessing to new data, the same directions are removed 
from the new data prior to applying the model. 

The algorithm starts by identifying the first principal component (PC) of the X-block. 
Next, the loading is rotated to make the scores be orthogonal to the Y-block. This loading 
represents a feature which is not influenced by changes in the property of interest 
described in the Y-block. Once the rotation is complete, a PLS model is created which 
can predict these orthogonal scores from the X-block. The number of components in the 
PLS model is adjusted to achieve a given level of captured variance for the orthogonal 
scores. Finally, the weights, loadings, and predicted scores are used to remove the given 
orthogonal component, and are also set aside for use when applying OSC to a new 
unknown sample. This entire process can then be repeated on the "deflated" X-block (the 
X-block with the previously-identified orthogonal component removed) for any given 
number of components. Each cycle results in additional PLS weights and loadings being 
added to the total that will be used when applying to new data. 

There are three settings for the OSC preprocessing method: number of components, 
number of iterations, and tolerance level. The number of components defines how many 
times the entire process will be performed. The number of iterations defines how many 
cycles will be used to rotate the initial PC loading to be as orthogonal to Y as possible. 
The tolerance level defines the percent variance that must be captured by the PLS 
model(s) of the orthogonalized scores. 

In the Preprocessing GUI, this method allows for adjustment of the settings identified 
above. From the command line, this method is performed using the osccalc and oscapp 
functions. 
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GLS Weighting 

Generalized Least Squares Weighting (GLSW) calculates a filter matrix based on the 
differences between pairs or groups of samples which should otherwise be similar.  

In the case of a calibration transfer problem, similar samples would be data from the 
same samples measured on two different instruments or on the same instrument at two 
different points in time. The goal of GLSW is to down-weight the differences between 
the two instruments and, therefore, make them appear more similar. A regression model 
built from GLSW-filtered data can be used on either instrument after applying the 
filtering to any measured spectrum. Although this specific application of GLSW is not 
covered by this chapter, the description below gives the mathematical basis of this use. 

GLSW can also be used prior to building a regression model in order to remove variance 
from the X-block which is mostly orthogonal to the Y-block. This application of GLSW 
is similar to OSC (see above), and such filtering can allow a regression model to achieve 
a required error of calibration and prediction using fewer latent variables. In this context, 
GLSW uses samples with similar Y-block values to identify the sources of variance to 
down-weight. 

In both cases, a single adjustable parameter, α , defines how strongly GLSW 
downweights interferences. Adjusting α  towards larger values (typically above 0.001) 
decreases the effect of the filter. Smaller α s (typically 0.001 and below) apply more 
filtering. 

Algorithm. The GLSW algorithm will be described here for the calibration transfer 
application (because it is simpler to visualize) and then the use of GLSW in regression 
multivariate filtering will be described. In either case, the approach involves the 
calculation of a covariance matrix from the differences between similar samples. In the 
case of calibration transfer problems, this difference is defined as the numerical 
difference between the two groups of mean-centered transfer samples. Given two sample 
matrices, X1 and X2, the data are mean-centered and the difference calculated: 

 X1,mc = X1 − 1x1  (7-12) 

 X2,mc = X2 − 1x2  (7-13) 

 Xd = X2 − X1  (7-14) 

where 1 is a vector of ones equal in length to the number of rows in X1, 1x  is the mean of 
all rows of X1, and 2x  is the mean of all rows of X2. Note that this requires that X1 and 
X2 are arranged such that the rows are in the same order in terms of samples measured on 
the two instruments. 
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The next step is to calculate the covariance matrix, C: 

 C = Xd
T Xd  (7-15) 

followed by the singular-value decomposition of the matrix, which produces the left 
eigenvectors, V, and the diagonal matrix of singular values, S: 

 C = VS2VT  (7-16) 

Next, a weighted, ridged version of the singular values is calculated 

 D =
S2

α
+ 1D  (7-17) 

where 1D is a diagonal matrix of ones of appropriate size and α  is the weighting 
parameter mentioned above. The scale of the weighting parameter depends on the scale 
of the variance in Xd. Finally, the inverse of these weighted eigenvalues are used to 
calculate the filtering matrix. 

 G = VD−1VT  (7-18) 

This multivariate filtering matrix can be used by simply projecting a sample into the 
matrix. The result of this projection is that correlations present in the original covariance 
matrix are down-weighted (to the extent defined by α ). The filtering matrix is used both 
on the original calibration data prior to model calibration, and any future new data prior 
to application of the regression model. 

The choice of α  depends on the scale of the original values but also how similar the 
interferences are to the net analyte signal. If the interferences are similar to the variance 
necessary to the analytical measurement, then α  will need to be higher in order to keep 
from removing analytically useful variance. However, a higher α  will decrease the 
extent to which interferences are down-weighted. In practice, values between 1 and 
0.0001 are often used. 

When using GLSW to filter out X-block variance which is orthogonal to a Y-block, a 
different approach is used to calculate the difference matrix, dX . In this situation we 
have only one X-block, X, of measured calibration samples, but we also have a Y-block, 
y (here defined only for a single column-vector), of reference measurements. To a first 
approximation, the Y-block can be considered a description of the similarity between 
samples. Samples with similar y values should have similar values in the X-block.  

In order to identify the differences between samples with similar y values, the rows of the 
X- and Y-blocks are first sorted in order of increasing y value. This puts samples with 
similar values near each other in the matrix. Next, the difference between proximate 
samples is determined by calculating the derivative of each column of the X-block. These 
derivatives are calculated using a 5-point, first-order, Savitzky-Golay first derivative 
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(note that a first-order polynomial derivative is essentially a block-average derivative 
including smoothing and derivatizing simultaneously). This derivativization yields a 
matrix, dX , in which each sample (row) is an average of the difference between it and 
the four samples most similar to it. A similar derivative is calculated for the sorted Y-
block, yielding vector dy , a measure of how different the y values are for each group of 5 
samples. 

At this point, dX  could be used in equation 7-15 to calculate the covariance matrix of 
differences. However, some of the calculated differences (rows) may have been done on 
groups of samples with significantly different y values. These rows contain features 
which are correlated to the Y-block and should not be removed by GLS. To avoid this, 
the individual rows of dX  need to be reweighted by converting the sorted Y-block 
differences into a diagonal reweighting matrix, W , in which the ith diagonal element, wi, 
is calculated from the rearranged equation 

 2 ,log i d i ydw s= −y  (7-19) 

The value ,d iy  is the ith element of the dy  vector, and yds  is the standard deviation of y-
value differences: 
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The reweighting matrix is then used along with dX  to form the covariance matrix 

 2T
d d=C X W X  (7-21) 

which is then used in equations 7-16 through 7-18 as described above. 

In the Preprocessing GUI, the GLSW method allows for adjustment of the weighting 
parameter, α . From the command line, this method is performed using the glsw 
function, which also permits a number of other modes of application (including 
identification of "classes" of similar samples). 
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8. Classification 
Often, data sets consist of samples that belong to several different groups or “classes.” 
Classes may differ for many reasons, including variations in sample preparation, 
differences in chemical compound type (aromatic, aliphatic, carbonyl, etc.), or variations 
in process state (startup, normal, particular faults, etc.). A variety of methods have been 
developed for classifying samples based on measured responses.  

Methods that attempt to identify groups or classes without using pre-established class 
memberships are known as cluster analysis or unsupervised pattern recognition. Methods 
that use known class memberships are generally called classification or supervised 
pattern recognition. As we will demonstrate, classification of new unknown samples can 
be accomplished either manually using unsupervised methods or in an automated manner 
using supervised techniques.  

Distance Measures in Cluster Analysis and Classification 

Most cluster analysis methods are based on the assumption that samples that are close 
together in the measurement space are similar and therefore likely to belong to the same 
class. There are however, many ways of defining distance between samples. The most 
common is simple Euclidean distance, where the distance dij between samples xi and xj is 
defined as 

 ( )( )T

ij i j i jd = − −x x x x  (8-1) 

which is simply the square root of the sum of squared differences between the samples. 
Preprocessing, such as autoscaling, is often used prior to calculating the distance. 
Distance may also be defined based on PCA scores instead of on the raw data. This is in 
essence a noise-filtered estimate of the distance, as the deviations between samples in 
dimensions not included in the model are not considered. In this case, the distance dij 
between samples xi and xj with scores ti and tj (note that ti and tj are 1 x k vectors 
containing the scores on all PCs of the model for samples xi and xj) is defined as 

 ( )( )T

ij i j i jd = − −t t t t  (8-2) 

It is also possible to define the distance based on principal component scores adjusted to 
unit variance. This is analogous to the T2 statistic given in Equation 5-10. In this case the 
distance in Equation 8-2 is weighted by the inverse of the eigenvalues, λ: 

 ( ) ( )T1
ij i j i jd λ−= − −t t t t  (8-3) 

The distance measure defined in Equation 8-3 is one type of Mahalanobis distance. A 
Mahalanobis distance accounts for the fact that, in many data sets, variation in some 
directions is much larger in some directions than in others. Therefore, distance in some 
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directions is more significant than distance in other directions. This is illustrated 
graphically in Figure 8-1, which shows a data set (the stars) with lines representing 
constant Euclidean and Mahalanobis distances from the centroid. If these lines 
represented class boundaries, the data point shown as the sun would be clearly outside the 
Mahalanobis line, but would be inside a Euclidean distance line (especially if it were 
expanded to encompass all the data points).  

Constant 
Euclidean  
distance from 
centroid

Constant 
Mahalanobis 
distance from 
centroid

 
Figure 8-1. Contrast between Mahalanobis and Euclidean distance measures. 

It is also possible to define a Mahalanobis distance based on the raw data. In this case 

 dij = xi − x j( )C−1 xi − x j( )T  (8-4) 

where C is the covariance matrix of the data (defined in Equation 5-3). In this case, all 
dimensions in the data are considered when calculating a distance. This measure is not 
recommended for high-dimensional data sets with strong covariance because it 
overemphasizes dimensions where the variation is due mainly to noise. 

Cluster Analysis and Dendrograms 

In cluster analysis, each sample is initially assumed to be a lone cluster. All of the 
distances between samples are then calculated via one of the methods shown above, and 
the samples with the smallest distance are found and linked together. The procedure is 
repeated and the samples with the next closest distance are found and linked. The results 
are often displayed as a connection dendrogram. An example of this is shown in Figure 8-
2. Here the group of samples (with two measured parameters x1 and x2) are linked 
together, starting with the closest two, numbers 4 and 5, followed by the next closest 
samples, 1 and 2. Sample 6 is then linked to sample 5, which is already linked to sample 
4, and so on. The results are shown in the dendrogram at right. The vertical bars indicate 
which samples or groups are linked, while the horizontal position of the bar indicates the 
length of the link, i.e., the distance between the linked samples or groups.  
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Figure 8-2. Example of linking in cluster analysis and resulting dendrogram. 

In the example shown above, the distance between two groups of points was defined as 
the distance between the nearest neighbors of the two groups. For instance, the distance 
between samples 3 and 4 was used as the distance between the group of samples 1-3 and 
the group of samples 4-7, because samples 3 and 4 were the nearest neighbors of the two 
groups. There are other ways to define the distance between two groups. The most 
common of these is the centroid method, where the distance between two groups is the 
distance between either the center of mass or the average of the groups.  

The clusters can be defined from the dendrogram by placing a vertical line across it and 
moving it up and down the distance scale. For any given distance, the number of clusters 
with all points within that distance is the number of lines in the dendrogram that intersect 
the vertical line. In our example, a vertical line placed in the middle of the dendrogram 
would indicate three clusters, two of which consisted of three samples each (1-3 and 4-6) 
and a remaining lone sample (7). 

An Example of Cluster Analysis and Comparison with PCA 

As an example of cluster analysis we now consider the “Arch” data set. This data set 
consists of the analysis of 75 obsidian samples from four known quarries (samples 1-63) 
and artifacts from archeological digs of unknown origin (samples 64-75). The samples 
were analyzed for the concentration of 10 metals, (Fe, Ti, Ba, Ca, K, Mn, Rb, Sr, Y, and 
Zr), via X-ray fluorescence. The goal of this exercise will be to determine from which 
class ( i.e., quarry) each of the unknown samples comes. 

Start the “Analysis” tool by typing analysis at the command line, and load in the 
Arch.mat data from the PLS_Toolbox/Dems folder. Build a preliminary PCA model of 
the data by selecting PCA from the Analysis menu and clicking the Calculate button 
(gears), leaving the preprocessing set to the default, autoscaling. Specify a model with 
four principal components by clicking on the fourth line of the variance captured table 
and again clicking the Calculate button. A nice view of the data can be obtained by 
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clicking the Scores button and plotting Scores on PC1 on the x-axis and Scores on PC2 
on the y-axis. The result should look like Figure 8-3 below. The samples from known 
quarries are identified with labels beginning with K, SH, ANA and BL. Unknown 
samples are labeled s1-s12 and are shown as filled dark grey circles. It is evident that 
samples from each of the quarries cluster together.  
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Figure 8-3. Scores on first two principal components of Arch data. 

We would now like to produce a dendrogram view of these data. However, before we 
proceed, we will exclude the unknown samples from the analysis. This is easily done 
from a scores plot of Sample Number on the x-axis versus Score on PC1 on the y-axis. 
Click the Select button in Plot Controls window and make a rubber-band box around the 
last twelve samples (dark grey circles). In the Plot Controls window, select Exclude 
Selection from the Edit menu. From the Analysis menu select Cluster, then click 
Calculate. Accept the defaults and click Execute. The result should look like Figure 8-4, 
which shows a dendrogram of the samples from known quarries. The vertical line was 
added by executing the command vline(2.7,’--g’). Note how the samples from each 
quarry are perfectly grouped in the dendrogram, with each group coming off a single 
branch to the left of the vertical dashed line, in spite of the fact that the known class 
information of the samples was not used in the calculation of the dendrogram.  
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Figure 8-4. Dendrogram of samples from known quarries in Arch data. 

Classification by k-Nearest Neighbor and by Inspection in PCA 

The success of the dendrogram tells us that all samples of a given class (quarry) have as 
their nearest neighbors samples from the same class. This gives us some confidence that 
we should be able to assign the class of unknown samples by determining the class of 
their nearest known neighbor or neighbors. This leads us to the classification method k-
nearest neighbor, or kNN (Sharaf, 1986). In kNN the class of a sample is determined by 
the class of its single nearest neighbor (k = 1) or by a vote of a small (generally odd) 
number of its nearest neighbors (k = 3, 5, …). An example of this is shown in Figure 8-5. 
Here the unknown sample is the square. Its three nearest neighbors consist of two plusses 
and one X; thus, it would be assigned to the class of plusses.  
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Figure 8-5. Classification by kNN. 

The class of the unknown samples can be determined by running the command line 
function knn. Inputs are the known samples, the test samples, and a flag to indicate that 
autoscaling will be used. The results are shown below 
 
>> pclass = knn(arch(1:63,:),arch(64:end,:),1); 
 
Unknown   Unknown   Class    Nearest 
Number     Label    Number   Neighbor 
-------   -------   ------   -------- 
 1          s1         3      SHV24 
 2          s2         1      KAVG  
 3          s3         1      K-1C  
 4          s4         1      K-3A  
 5          s5         2      BLAV1 
 6          s6         2      BL-8  
 7          s7         2      BLAV1 
 8          s8         3      SHI10 
 9          s9         3      SH-1  
10          s10        3      SH-1  
11          s11        3      SH-5  
12          s12        3      SHI10 

The classification largely agrees with what we might expect from observation of the 
principal component scores plot. The samples that are hard to classify from the PCA 
scores plot are s1, s3 and s4. The first unknown, s1, is far from any of the groups, but it 
does appear to be somewhat closer to class 3, the SH samples. Samples s3 and s4 are 
assigned to K (class 1) by kNN, but appear to be equally close to the K and BL (class 2) 
groups in Figure 8-3.  

Is there a way that we might further explore the data and assign classes using PCA? 
Recall that we have so far looked only at the scores on the first two principal 
components. Are any of the other PCs useful for classification? It is easy to determine 
this by plotting the scores on each of the PCs individually versus sample number, or by 
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doing cross-plots of the scores. It is clear from Figure 8-3 that PCs 1 and 2 are describing 
differences between the quarries. What about PC 3, shown in Figure 8-6? This PC 
appears to be describing a variation in the data that doesn’t have anything to do with the 
quarry, as the sample scores do not appear to be at all correlated with quarry. What about 
PC 4, shown in Figure 8-7? On this PC the scores from BL quarry are negative while 
those from K and SH are positive or near zero. Thus it appears that PC 4 is useful in 
discriminating the quarries.  
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Figure 8-6. Scores on PC 3 of Arch data. 
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Figure 8-7. Scores on PC 4 of Arch data. 

A plot of the scores on PC 4 versus PC 1 (along with PC 2 versus PC 1, Figure 8-3), can 
now be used to determine the source of samples s1, s3 and s4 (Figure 8-8). Sample s1 
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remains close to the SH group in the PC 4 versus PC1 plot, so the assignment to the SH 
group from kNN appears appropriate. Similarly, samples s3 and s4 remain close to the K 
class, suggesting the classification from kNN is correct.  
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Figure 8-8. Scores of PC4 versus PC1 of Arch data. 

In this example we have shown how samples may be classified by the very simple 
technique of kNN. Our classifications were confirmed by inspection of a PCA model. 
While kNN can be a very useful classification method in many circumstances, there is 
much that it doesn’t give you. In particular, there is no information in the kNN model 
concerning what variables are useful in separating classes from each other. The PCA 
model we generated, however, contains much of this information in the loadings. The 
reader is encouraged to use the loadings in the Arch example to determine what variables 
are responsible for separating the classes.  

SIMCA 

We have observed that PCA is a very useful tool for identifying if samples are the same 
or different, and what variables are responsible. We also know that a PCA model is a 
description of a data set that includes statistical limits and accounts for the fact that 
variation in some directions is larger than in others. However, there is no guarantee that a 
given PCA model of multiple classes will be useful for differentiating the classes. This is 
because the class information was not used in the construction of the model; the PCA 
model just attempts to describe the overall variation in the data. So how can we use PCA 
in a way that utilizes the properties of the models but incorporates information about the 
classes of the calibration data? The answer to this is SIMCA. There is some disagreement 
about the source of the acronym, (Soft Independent Method of Class Analogy, Standard 
Isolinear Method of Class Assignment, etc.) but there is consensus on the details of the 
method (Wold, 1976). 
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A SIMCA model consists of a collection of PCA models, one for each class in the data 
set. This is shown graphically in Figure 8-9. Each class can have a different number of 
principal components; the number depends on the data in the class. Each PCA sub-model 
contains all the usual parts of a PCA model: mean vector, scaling information, 
preprocessing such as smoothing and derivatizing, etc.  

Class 1 
3 PCs

Class 2 
1 PC

Class 3 
2 PCs

x1

x2

x3

 

Figure 8-9. Graphical representation of a SIMCA model. 

As an example of SIMCA, we now return to the Arch data from the previous example. 
Start the Analysis GUI, choose File/Load Data/X-block and load the data from the 
PLS_Toolbox/Dems folder. Select SIMCA from the Analysis menu, then click the Show 
SIMCA model builder button (the button with the hammer on it). The window shown in 
Figure 8-10 should appear. The available classes in the data set are shown on the left. 
Note that the unknown samples, which are listed as Class 0 in the arch DataSet Object, 
are not listed, as the tool assumes that samples of unknown class are listed as class 0.  
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Figure 8-10. SIMCA Model Builder window. 

Start the model building process by selecting 1 from the Available Classes list then 
clicking Fit Model. (Note that it is possible to build a model on combined classes as well 
as individual classes.) A PCA model of the Class 1 samples appears in the main Analysis 
GUI window. This model can now be developed in the usual way—the number of PCs in 
the model can be selected, the preprocessing can be changed, etc. (In our example we’ll 
leave the preprocessing set to the default autoscaling.) The samples from the classes not 
being modeled, as well as any unknown samples, will be projected onto the class model 
under construction. An example of this projection is shown in Figure 8-11, which shows 
the model of Class 1, the K class, as triangles. The unknown samples are the filled circles 
with labels s1-s12. (The labels were made to appear only on these samples by first 
selecting them from a plot of PC1 versus sample number, then selecting View/Labels in 
the Plot Controls window.) A 95% ellipse was created by selecting Conf. Limits in the 
Plot Controls window. As expected, the samples upon which the model was built fall 
near the center of the plot within the 95% ellipse. Sample s2 falls within the scores limit, 
and samples s3 and s4 are close (if the limit is adjusted to 99%, these samples fall inside). 
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Figure 8-11. Arch data projected onto model of class 1 (K).  

It is also useful to look at the T2 versus Q for the data on the model of Class 1, as shown 
in Figure 8-12. Here the axes have been changed to logarithmic scales by selecting 
View/Log Scales/All in the Plot Controls window. Samples s2 and s3 are close to the 
95% Q limit, while other samples are much further away.  
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Figure 8-12. T2 versus Q for all the Arch data on the model of class 1 (K).  

Once the PCA model of class 1 is finalized, it may be added to the SIMCA model by 
clicking the Add Model arrow in the SIMCA Model Builder window. The next class 
can then be selected and the procedure repeated. For this example, all PCA models were 
constructed with two principal components except for class 3, the SH class, which was 
built with one component. Once all the models are built, click on Assemble SIMCA 
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Model in the SIMCA Model Builder window. To apply the SIMCA model to the 
calibration data and the unknown samples, click the Calculate button (the button with the 
gears on it) in the main Analysis GUI window.  

To get a quick view of the results, click the Samples/Scores button and plot “Nearest 
Class” versus sample number. This should produce the plot shown in Figure 8-13. Note 
that all samples are nearest to their respective class. Labels can be added to the unknowns 
only by selecting them and turning labels on in the Plot Controls/View menu. A 
zoomed-in view focusing on the unknowns is shown in Figure 8-14. Except for sample 
s1, the assignments agree well with the classification by inspection and kNN results 
above. Note that the plots show the nearest class. The nearest class to a sample is defined 
as the class model which results in a minimum distance of the sample i to model j, dij: 

 dij = Qr( )2 + Tr
2( )2  (8-5) 

with reduced Q: 

 Qr =
Q

Q0.95

 (8-6) 

where Q0.95 is the 95% confidence interval for the model under consideration, and 
reduced T2: 

  Tr
2 =

T 2

T0.95
2  (8-7) 

with a similarly defined T2
0.95. This distance measure gives equal weighting to distance in 

the model space (T2) and residual space (Q). Use of reduced Q and T2 allows direct 
comparison of the values of specific samples on different SIMCA submodels. Without 
the use of these reduced statistics, each model's T2 and Q values would be on very 
different numerical scales and not easily comparable.  

Inspection of the reduced Q and T2 plots (not shown) reveals that many of the samples 
are not within the 95% limits of the classes.  
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Figure 8-13. Nearest classes to SIMCA submodels for Arch samples. 
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Figure 8-14. Nearest classes to SIMCA submodels for unknown Arch samples. 

 

PLS-DA 

While SIMCA is often a very useful classification tool, it does have drawbacks, the main 
one of these being that the PCA submodels in SIMCA are computed with the goal of 
capturing variation within each class. No attempt is made to identify directions in the data 
space that discriminate classes directly. We now consider a classification method that 
addresses this issue directly: Partial Least Squares Discriminant Analysis (PLS-DA). The 
attentive reader will note that the goal of PLS-DA is very similar to that of another 
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common discrimination technique called Linear Discriminant Analysis (LDA). In fact, 
Barker and Rayens (2003) have shown that PLS-DA is essentially the inverse-least-
squares approach to LDA and produces essentially the same result but with the noise 
reduction and variable selection advantages of PLS. 

In PLS-DA we will use PLS to develop a model that predicts the class number for each 
sample. In a data set with just two classes, it is easy to see how we might set up a y 
variable which indicates if the samples are in one of the classes by setting it to 1 if it is in 
the class and 0 if it is not. The model, of course, will not predict either a 1 or 0 perfectly, 
so a limit must be set, say 0.5, above which the sample is estimated as a 1 and below 
which it is estimated as a 0.  

But what if there are more than two classes? It would be possible to set up a y variable 
with the class numbered 1, 2 or 3. However, this would imply that class 2 is somehow in 
between class 1 and class 3, which likely is not the case. The solution to this is to create a 
Y-block with a variable for each class. A 1 indicates a sample belongs to a class, and a 0 
indicates that it does not. PLS for multivariate Y can now be performed.  

As an example of PLS-DA, we now return to the Arch data set. Load the arch.mat file 
into the Analysis GUI by selecting File/Load/X-block in the main Analysis GUI 
window. Under the Analysis menu select PLS-DA. Set up cross-validation by selecting 
Cross-Validation from the Tools menu. In the Cross-Validation window that appears, 
select Venetian Blinds under the Cross-Val Method menu. The defaults of 9 splits of 
the data and 10 LVs can be left as they are. Click the Calculate button (the gears) in the 
main Analysis GUI window. The result should look like the window shown in Figure 8-
15.  

The number of latent variables (LVs) to retain in the model must now be specified. Click 
on the Stats button (the button with the pink graph and lambda symbol). The RMSECV 
curves for each of the four class variables in the Y-block can viewed by control-clicking 
each of the curves in the Plot Controls window. A legend can be added by clicking the 
legend icon on the plot. The result should look like Figure 8-16. It is apparent that the 
RMSECV for all the class variables level out after three LVs, except for class 1, which 
continues down slightly. Based on this, selecting three LVs for the overall model appears 
prudent. A selection of three LVs is also supported by the Variance Captured table. Select 
three LVs by clicking the third line of the Variance Captured table and then clicking the 
Calculate button.  
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Figure 8-15. Analysis GUI main window with PLS-DA model of Arch data. 
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Figure 8-16. RMSECV for classes in PLS-DA model of Arch data. 
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Other aspects of the PLS-DA model may now be explored. Click the Samples/Scores 
button, and use the Plot Controls window to view the sample scores and the predictions 
for all of the samples, including the unknowns, for each of the classes. For instance, it is 
possible to view the predictions for class 1 (K) by selecting Y Predicted 1 (Class 1) from 
the Y menu. The result for the three-LV PLS-DA model is shown in Figure 8-17. The 
calculated threshold is shown as the horizontal red dashed line at approximately 0.35. 
The threshold is estimated using Bayes' Theorem and the available data in order to 
minimize total errors (see the plsdthres function for more details).  

Note that one of the BL samples (green stars) is predicted to be a Class 1 (K). Changing 
the model to four LVs corrects this, and appears to have little impact on any of the other 
class identifications (Figure 8-18). Note that samples s2-s4 are predicted to be class 1 
(K). Samples s5-s7 are predicted as class 2 (BL), and samples s7-s12 are predicted to be 
class 3 (SH). Note that sample S7 is predicted to belong to both the BL and SH class (in 
both the three-LV and four-LV models). Sample s1 is not predicted to belong to any 
model.  

The Bayesian threshold calculation assumes that the predicted y values follow a 
distribution similar to what will be observed for future samples. Using these estimated 
distributions, a threshold is selected at the point where the two estimated distributions 
cross; this is the y-value at which the number of false positives and false negatives should 
be minimized for future predictions. This calculation assumes that the distribution of 
predicted y-values for a class is approximately normal. Small numbers of samples in any 
class may bias the threshold. Similar calculations can be done on cross-validated or test-
set y-predictions to verify future performance of the selected threshold. In addition, 
examination of the observed distribution of y-values is also warranted. This can be done 
by examining the ROC and Threshold plots. 
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 Figure 8-17. PLS-DA three-LV model predictions for class 1 (K). 
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Figure 8-18. PLS-DA four-LV model predictions for class 1 (K).  

The overall sensitivity and specificity of the model can be accessed by selecting the 
View/Show Model Details menu in the Analysis GUI or using the modlrder function at 
the command line. In these results, the sensitivity and specificity is reported for each of 
the four classes as well as both calibration (self-prediction) and cross-validation results. 
In this case, all are reported as perfect (no errors): 
 
Modeled Class: 1 2 3 4  
Sensitivity (Cal): 1.000 1.000 1.000 1.000  
Specificity (Cal): 1.000 1.000 1.000 1.000  
Sensitivity (CV):  1.000 1.000 1.000 1.000  
Specificity (CV):  1.000 1.000 1.000 1.000  

These values (which, in this case, indicate no errors in either calibration or cross-
validation) can be converted into "fractional error" by subtracting each from 1. 

Sensitivity and specificity can also be viewed in a graphical form referred to as a 
Receiver Operating Characteristics Curve (ROC curve) by selecting the ROC curves 
button in the Analysis GUI toolbar. The result of this is shown in Figure 8-19. The 
sensitivity versus specificity for each of the four class models are shown on the left. Each 
plot shows the specificity of the model (number of samples predicted as not in the class 
divided by actual number not in the class) versus the sensitivity (number of samples 
predicted as in the class divided by number actually in the class) as a function of selected 
threshold. A curve which reaches the upper left corner implies that at some threshold, the 
specificity could be perfect (1) without loss of sensitivity (dropping below 1). The 
threshold selected by the PLSDA algorithm is shown as a red circle on each of the 
estimated and cross-validated curves. 
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Figure 8-19. Receiver Operating Characteristic curves (left) and threshold plots (right) for 
PLS-DA model of Arch data. 

The figures on the right show the sensitivity and specificity as the threshold value is 
varied. Ideally, these lines cross while still at a value of 1. Crossing below a value of 1 
indicates that, as the threshold is increased, sensitivity begins to suffer (drops below 1) 
before the model is completely specific. The vertical dashed red line indicates the 
threshold selected by the PLSDA algorithm. This is the threshold used to calculate the 
sensitivity and specificity reported in the model details. The point that the vertical 
threshold line crosses the solid red line in any given plot is the calibration sensitivity, and 
the point where the threshold line crosses the dashed red line is the cross-validation 
sensitivity. Similarly, the point where the threshold line crosses the solid blue line is the 
calibration specificity and the point where the threshold line crosses the dashed blue 
lineis the cross-validation specificity. 

It should be noted that the curves in both sets of plots are estimated based on 
interpolation between measured values. It is not unlikely that, as in this example, the 
ROC curves show a slightly different sensitivity and specificity result than that given in 
the model details. The Model Details results are the exact sensitivity and specificity 
determined from the modeled samples. The ROC curve results are the estimated results 
given a larger, similarly distributed set of samples. 
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Based on the results shown in Figure 8-19, the PLS-DA model of Arch is nearly a 
complete success based on calibration and cross-validation using data with known 
classes. The only real issue is sample s7, which is predicted to belong to both the BL and 
SH class with approximately equal probability. Inspection of a PCA of the data as well as 
scores from the PLS-DA model suggests that this sample is much more likely to be BL 
rather than SH. It is possible to add non-linear terms to the model by augmenting the 
original data with squares and cross terms of the data. If this is done, the classification of 
s7 is BL. 

A detailed treatment of the PLS-DA technique is given by Barker and Rayens (2003). In 
addition, an example of its use was given by Musumarra (2004). 
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9. Curve Resolution and Mixture Analysis 
PCA is perhaps the most commonly used factor analysis technique; however, it is not the 
only one. In this chapter, additional factor-based techniques are considered that are useful 
for extracting information from a data set. While techniques such as PCA calculate 
factors based on mathematical properties such as capturing maximum variance and 
orthogonality, the factors are often difficult to interpret because they are generally not 
directly related to chemical properties. For example, PCA loadings of a data set of 
measured spectra generally are not pure component spectra. Instead, the loadings are 
typically linear combinations of pure analyte spectra that have positive and negative 
intensities. Factor analysis techniques discussed in this chapter are aimed at estimating 
factors that have desirable properties from a chemical point of view and are easier to 
interpret. 

The first two sections of this chapter discuss evolving factor analysis (EFA) and evolving 
window factor analysis (EWFA). These two techniques are appropriate for data that are 
naturally ordered or have continuity, and can be used to find an initial estimate of the 
range of existence of analytes in an evolving system. This discussion is followed by a 
section on multivariate curve resolution (MCR). MCR examples utilize EFA results to 
initialize the algorithm for an evolving data set. MCR is also known as self-modeling 
curve resolution (SMCR) and end member extraction. The MCR section introduces the 
mathematical model for the technique as well as the constrained alternating least squares 
algorithm (ALS). Although ALS is not the only algorithm used in MCR, it is one of the 
most common. It is one of several algorithms available that solve the objective function 
in a constrained least squares sense. 

A related technique, discussed after MCR, is self-modeling mixture analysis (SMA). The 
objectives and mathematical models of MCR and SMA are similar; they both typically 
decompose a data matrix into the outer product of non-negative factors. The difference is 
that SMA is appropriate for data sets that are not evolving or naturally ordered in time. In 
fact, SMA algorithms can be applied to data sets that have continuity, but techniques 
specifically designed to take data ordering into account are often not useful for data that 
does not have continuity. The SMA section introduces purity-based methods. These 
algorithms are based on geometric arguments regarding data that are naturally 
decomposed into the outer product of non-negative factors. These algorithms tend to be 
fast and work very well when the data are highly selective. However, purity-based 
algorithms do not generally find a solution in a least squares sense and are not as 
amenable to the inclusion of constraints. Therefore, purity-based methods are very 
popular for obtaining (and inspecting) an initial solution that is followed by an algorithm 
that allows for a constrained least squares solution. 
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Evolving Factor Analysis 

Evolving Factor Analysis (EFA) is one method applied to data that are naturally ordered; 
for example, data produced by dynamic systems. Like multi-way principal components 
analysis (MPCA), EFA considers the ordered nature of the data set explicitly. EFA is a 
general technique for analysis of multivariate data that have an intrinsic order (Keller and 
Massart, 1992). Like PCA, EFA can be used to determine how many “factors” are 
present in a data set; that is, how many independent sources of variation exist. 
Additionally, EFA can be used to determine where in a data set the factors first appear 
and where they disappear. 

The fundamental idea of EFA is to follow the singular values of a data matrix as rows 
(samples) are added. Given a data matrix X  (usually not mean-centered when 
performing EFA) with m samples and n variables, the singular value of the first row 
(sample) is determined. Next, the singular values for the first two rows are calculated, 
followed by the first three rows, and so on until all m samples have been considered. 
Since the number of samples considered, and thus the number of factors, evolves as the 
method proceeds, the technique is known as EFA. Of course, the number of non-zero 
singular values can never be greater than the lesser of the number of rows and columns in 
the sub-matrix considered. It is also customary to do EFA in the reverse direction, i.e., 
determine the singular values starting from the last row in the matrix and working 
upwards until all rows have been considered. 

Once the singular values have been determined, they (or their logarithms, since they 
usually span many orders of magnitude) can be plotted versus the ordered variable (e.g., 
time). As new factors enter the data, new significant singular values will rise from the 
baseline of small singular values associated with noise in the data. Working in the reverse 
direction, significant singular values will rise from the baseline when factors disappear 
from the data matrix. 

EFA Example 

As an example of EFA, consider the semiconductor etch process again (see the previous 
description of the data set in Chapter 5). Optical Emission Spectroscopy (OES) was used 
to measure the plasma during etch. Initially, there is only the BCl3/Cl2 etch gas in the 
reactor. When the plasma is ignited, the first layer of aluminum begins to etch away. 
Once the aluminum is gone, the titanium nitride (TiN) is uncovered and begins to etch 
away. When the TiN layer is gone, the plasma is in contact with only the silicon oxide 
layer, which is nearly non-reactive. A set of idealized concentration profiles is shown for 
this process in Figure 9-1, along with a set of pure component spectra (obtained using 
MCR, discussed below). 

Of course, the pure component spectra are not observed directly. Instead the measured 
mixture spectra are observed as a function of time, as shown in Figure 9-2. These data 
can be found in the oesdata.mat file. Note that the data are stored as a DataSet Object of 
type ‘batch.’ Three etch runs are stored, each with a different number of time steps. To 
accommodate the different number of time steps (number of rows), the data are stored as  
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Figure 9-1. Concentration profiles and pure component spectra for EFA example. 

a cell array in the oesdata.data field. If the data followed the idealized concentration 
profiles of Figure 9-1, the results of EFA would be as shown in Figure 9-3. In the forward 
analysis, a large singular value exists from the very beginning, a result of the presence of 
the etch gas. As Aluminum (Al) begins to etch, another singular value is added. A third 
singular value rises from the baseline as TiN begins to etch. In the reverse direction, all 
that remains at the end of the run is etch gas. As the TiN etch ends, a singular value rises 
from the baseline. Finally, a third singular value emerges as the Al etch ends. 

Unfortunately, in reacting systems, evolving factor analysis is seldom this simple (though 
it can be in chromatography and other analytical applications where a separation step 
precedes the spectroscopic measurement). Figure 9-4 shows the results of EFA on actual 
OES data from the first wafer in the data set. Evolving factor analysis can be applied to 
this data using the evolvfa function as follows: 

» load oesdata; 
» [egf,egr] = evolvfa(oesdata.data{1}); 

Here the input is the matrix of spectra from the first batch and the outputs are the forward 
and reverse singular values. The results are shown in Figure 9-4. In this example, both 
etch gas and Al are present at the beginning of the run. A second singular value is 
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observed when the Al disappears; that is, when it starts to vary independently from the 
etch gas. A fourth minor component is also observed. 

Figure 9-2. Optical emission spectra as a function of time. 

Figure 9-3. Evolving factor analysis of idealized OES from etch process. 
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Figure 9-4. Evolving factor analysis of actual OES from etch process. 

In summary, EFA provides important information concerning the times of existence of 
independently varying factors in the data set. This may be used to identify when analytes 
enter a reactor, or when process disturbances or instrument failures occur. However, 
interpretation of EFA profiles can be complicated when ranges of existence are highly 
overlapped. 

Evolving Window Factor Analysis 

Evolving Window Factor Analysis (EWFA) is closely related to EFA and can sometimes 
be used to resolve ambiguities concerning the range of existence of factors in a data set. 
EWFA tracks the singular values of a moving window in a data set. For instance, with a 
window width of 2 1j +  samples, i  is incremented 1, ,i m= …  and the singular values of 
samples i j−  to i j+  are calculated. As in EFA, the singular values are plotted as a 
function of index number i . The result is an indication of the number of independently 
varying factors in each window. 

Consideration must be given to the window width used in EWFA. The window should be 
narrow enough to isolate factors which exist in different parts of the data record, but 
sufficiently wide to enhance the signal-to-noise obtained by including multiple spectra. 
At times the choice is not easy; however, it is a simple matter to try several window 
widths and examine the results. One suggestion is to use EFA first to find out how many 
factors are present in the entire data set, then use a window width that is one sample 
larger than the number of factors. 
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Example of EWFA 

As an example of EWFA, the OES data from the semiconductor etch process is used 
again. EWFA can be performed on the first wafer of the oesdata.mat file using the ewfa 
function as follows: 

» load oesdata; 
» eigs = ewfa(oesdata.data{1},7); 

In this example, the window width was set to 7 and the results are shown in Figure 9-5. 
Singular values for the windows near the ends of the record with a width less than 7 are 
shown as dashed lines. It is clearly seen that there is only a single source of variation at 
both ends of the data record (though we know that at the beginning it is both Al and etch 
gas). There are three sources of variation centered around sample 12 and two sources 
around sample 23. Given our knowledge of the process, it is a good guess that the two 
factors centered around sample 23 are etch gas and TiN. What about around sample 12? 
Based on the EFA, we know that there are four factors total in the data set. The three 
factors must be etch gas, Al, and an unknown fourth component. Multivariate Curve 
Resolution may help us determine its origin. 

Multivariate Curve Resolution 

EFA and EWFA provide important information regarding the system; namely, the total 
number of factors present and their times of appearance and disappearance. However, it 
would be impossible to identify the compounds based on this information alone 
(additional information is necessary). Nonetheless, the results of EFA do provide a 
starting point for the determination of the concentration profiles and pure component 
spectra. Techniques for obtaining this additional information are known as Multivariate 
Curve Resolution (MCR), or Self Modeling Curve Resolution (SMCR) (see Jiang and 
Ozaki, 2002; Tauler et al., 1993a,b, 1994, 1995, 1998; Massart et al., 1998; Hamilton and 
Gemperline, 1990; Sánchez et al., 1997). MCR has also been referred to as End Member 
Extraction. 
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Figure 9-5. Evolving window factor analysis of actual OES from etch process. 

The objective of MCR is to extract concentration profiles and pure component spectra 
with as few assumptions about the data as possible. Given an m n×  data matrix X  (not 
mean-centered) that is the product of a m k×  matrix of concentration profiles C , and a 
n k×  matrix of pure component spectra S , where k  is the number of analytes, 

 T= +X CS E  (9-1) 

the goal is to obtain physically meaningful C  and S . Obviously this cannot be obtained 
directly from a principal components analysis (PCA) decomposition of X  without 
additional information because the equation: 

 1T T T
est

−= = =X TP TRR P CS  (9-2) 

where 

 T
est= + = +X X E TP E  (9-3) 

has an infinite number of solutions for any arbitrary invertible k  by k  transformation 
matrix R , resulting in a rotational and intensity ambiguity for C  and S  if no other 
information is known. Here T  is a m  by k  matrix of scores with orthogonal columns, 
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and P  is a n  by k  matrix of orthonormal loadings also referred to as “abstract factors” 
(Malinowski, 1991).  

Fortunately, more information is typically available. In particular, both concentrations 
and spectra are necessarily non-negative. Using this constraint, it is often possible to 
extract the pure component spectra through a procedure of alternating and constrained 
least squares optimization. For example, non-negativity is a sufficient constraint if there 
is sufficient selectivity in the data (Manne, 1995; Tauler, 2001; Gemperline and Cash, 
2003). Starting with the results of the EFA, it is possible to obtain an initial estimate of 
the concentration profiles, or at least, the range of existence in the data set of each 
component. These concentration profiles are used as initial estimates in the constrained 
and alternating least squares optimization. At each iteration of the optimization, a new 
estimate of the spectra matrix S  and of the concentration profiles C  is obtained. Iteration 
between the following two equations is performed: 

 T T
est

+=S C X  (9-4) 

 est
+=C X S  (9-5) 

where ( ) 1T −+ =C C C C  and ( ) 1T −+ =S S S S  are pseudoinverses of the matrices C  and S  
respectively. If non-negativity constraints are implemented, Equations (9-4) and (9-5) are 
solved subject to these constraints. Equality constraints, such as forcing the concentration 
of a particular analyte to zero or some known value, can also be imposed. Selection of the 
correct number of components when originally calculating estX  (see Equation 9-3) is 
important. Selecting too few components will cause small-variance components to be 
undetectable. Although the original unfiltered data, X , can be used, use of estX  can 
improve the stability of the pseudoinverse calculations, since estX  is a noise-filtered 
estimate of X . 

The constrained alternating least squares algorithm discussed above is commonly used. 
However, other algorithms that have similar objectives to those stated for MCR above are 
also used (see Tomasi et al., 2006; Paatero,1997; Berman et al., 2005). It should be noted 
that there is typically an intensity ambiguity in the MCR results, i.e., an ambiguity in the 
absolute magnitude of the concentration profiles and pure component spectra. For 
example, if D  is an arbitrary k  by k  invertible diagonal matrix then 

 1T T
est

−= =X CS CDD S  . (9-6) 

If, however, the concentration of a component is known at any point within the data (e.g., 
by including standards), it is possible to resolve the ambiguity for that particular 
component. However, when non-zero equality constraints for a concentration profile 
and/or spectrum are unavailable, the estimated spectrum ks  is constrained to be of unit 
length such that 1T

k k =s s  (otherwise a solution might wander about aimlessly without 
improving the fit). If additional information is known about the problem, it is possible to 
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incorporate it into the iteration procedure as a constraint. For instance, it is often assumed 
that the concentration profiles are unimodal. In other cases, closure or a known 
stoichiometry may be used. When additional known (correct) constraints are used, the 
quality of the solution obtained generally improves. The most common constraints are 
non-negativity that can be applied using hard (Bro and de Jong, 1997) or soft 
(Gemperline and Cash, 2003) methods. Other constraints can include hard modeling or 
functional constraints (see de Juan et al., 2000; Gurden et al., 2001; Gallagher et al., 
2003). 

As mentioned above, good solutions for C  and S  can be obtained when good selectivity 
exists. However, as the selectivity decreases, the estimates can become poor. This is a 
result of a rotational ambiguity [Gemperline, 1999; Tauler, 2001). For example, if R  is 
an arbitrary invertible non-diagonal matrix then 

 1T T
est

−= =X CS CRR S  . (9-7) 

Note: Users should be aware of the potential for multiplicative [Equation (9-6)] and 
rotational [Equation (9-7)] ambiguities and not over-interpret results from MCR. 
Utilizing additional correct constraints can reduce ambiguities in the solution; however, 
multiplicative ambiguities mean that C  and S  are in arbitrary units. In a perfect world, 
C  and S  would be proportional to true concentrations and spectra (at unit concentration 
and pathlength); however, rotational ambiguities can make concentration profiles and 
spectra look different from the true underlying factors. To emphasize these potential 
problems, C  will be referred to as “contributions” instead of “concentrations” in the 
remainder of this chapter. The columns of the matrix S  will still be referred to as spectra 
and/or pure component spectra. 

It is also possible to combine data sets from different process runs (or analytical runs) 
simply by augmented matrices as follows: 

 

1 1 1

2 2 2T

P P P

     
     
     = = +
     
     
     

X C E
X C E

X S

X C E
# # #

 (9-8) 

where pX  are the ordered data for each of the 1, ,p P= …  process runs and the pC  are 
the associated contribution profiles from the runs. Combining data from different runs, 
and/or measured standards, may also contribute to the stability of the solutions obtained. 
Augmented matrices of standard analytes can be included to improve selectivity and 
allow MCR to be used for quantification (see Tauler, 1995; de Juan et al., 1998; Tauler et 
al., 1998; de Juan et al., 2001).  
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Example of Multivariate Curve Resolution 

As an example of MCR, the data used in the EFA example discussed above are used. 
Recall that the approximate range of existence of each component present in the data was 
determined using EFA. Due to its small size, the fourth component in this data set is 
difficult to estimate; therefore, in the first attempt, only the first three components are 
estimated. It is expected that these data can be decomposed as non-negative 
concentrations times non-negative spectra, and the default optional constraint for mcr and 
its low level decomposition function als. is non-negativity for C  and S . The als 
function is used in this example. 

The first step in the MCR decomposition is to generate an initial estimate of the 
contribution profiles, c0 (or spectra). In this case there is reason to believe that the 
BCl3/Cl2 etch gas is present for the entire run. Al, however, is only present at the 
beginning, and TiN should only be present in the middle. Thus, an initial estimate is 
constructed using the expected range of existence of the analytes as follows: 
 
» dat = oesdata.data{1}; 
» c0         = zeros(46,3); 
» c0(:,1)    = 1; 
» c0(1:12,2) = 1; 
» c0(9:24,3) = 1; 

The MCR decomposition can be performed using the als function as follows: 

» [c,s] = als(dat,c0); 
Non-Negativity on C (Fast Least-Squares) 
Non-Negativity on S (Fast Least-Squares) 
Terminated based on maximum iterations 
Elapsed time: 18.3 seconds 
Residual (RMSE) 7.956991e+002 
Unmodelled Variance is 0.158656 percent 

The resulting estimates for the contribution profiles and pure component spectra are 
shown in Figure 9-6. The residuals are also plotted as a function of time and wavelength 
(Figure 9-7). Figure 9-6 looks close to the expected result; however, the third analyte 
(TiN) has non-zero values in the first nine time steps. This was not expected based on the 
way the layers are applied to the semiconductor. Additionally, the residuals are high in 
the contribution profile about where EFA suggested the fourth component might exist. 
Contribution constraints can be used to eliminate non-zero estimates for the TiN where it 
is expected to have zero contributions. Constraint matrices are constructed using desired 
numerical values where constraints are to be applied, and NaNs in locations where there 
are no constraints. This is done as follows: 
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Figure 9-6. Results from MCR of OES from etch process with non-negative constraints 
and three factors: etch gas (blue), Al (green), TiN (red). 

 

» options = als('options'); 
» options.cc           = zeros(46,3)*NaN; 
» options.cc(15:end,2) = 0; 
» options.cc(1:8,3)    = 0; 
» [c,s] = als(dat,c0,options); 
Non-Negativity on C (Fast Least-Squares) 
Non-Negativity on S (Fast Least-Squares) 
Hard Equality Constraints on C: component(s) 2  3 
Terminated based on maximum iterations 
Elapsed time: 16.8 seconds 
Residual (RMSE) 7.966828e+002 
Unmodelled Variance is 0.159048 percent 

The first command above generates a default options structure, and the following 
commands fill in the contributions constraints matrix options.cc. Note that options.cc 
is the same size as the expected output c, i.e., it is m k× . The results from running als 
with the constraints are shown in Figure 9-8. In the contribution estimates, the etch gas is 
the upper line. The Al curve starts positive then goes to zero, while the TiN starts at zero, 
peaks, and returns to zero. 

Next, we use the als function to estimate the contribution profiles and the spectra for the 
OES data with four factors. The contributions of the Al and TiN were constrained to be 
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zero in ranges suggested by the initial MCR results. A fourth component was constrained 
to be zero in the range of time steps 1 to 7 and 15 to 46. 

Figure 9-7. Residuals corresponding to the analysis shown in Figure 9-6. 

Figure 9-8. Results from MCR of OES with equality constraints: etch gas (blue), Al 
(green), TiN (red). 
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» load oesdata 
» dat        = oesdata.data{1}; 
» c0         = zeros(46,4); 
» c0(:,1)    = 1; 
» c0(1:12,2) = 1; 
» c0(9:24,3) = 1; 
» c0(5:20,4) = 1; 
» options    = als('options'); 
» options.cc           = zeros(46,3)*NaN; 
» options.cc(15:end,2) = 0; 
» options.cc(1:8,3)    = 0; 
» options.cc(:,4)      = NaN; 
» options.cc([1:7 15:end],4) = 0; 
» [c,s] = als(dat,c0,options); 
Non-Negativity on C (Fast Least-Squares) 
Non-Negativity on S (Fast Least-Squares) 
Hard Equality Constraints on C: component(s) 2  3  4 
Terminated based on maximum iterations 
Elapsed time: 17.1 seconds 
Residual (RMSE) 7.611437e+002 
Unmodelled Variance is 0.145175 percent 

The result after 100 iterations is shown in Figure 9-9. In this case, the contribution 
profiles for the etch gas, Al, and TiN conform very well to those suggested by the major 
peaks in the spectra. The fourth component appears to be a background addition. Note 
that, based on residuals (not shown), the fit of this model to the data is only slightly better 
than a fit using three components, and may not be justified. 
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Figure 9-9. Results from MCR estimate of four factors from OES data: etch gas (blue), 
Al (green), TiN (red), unknown fourth factor (cyan). 

This example is a fairly typical example of an MCR analysis. Often, the initial results 
using only non-negative constraints, and without equality constraints, are not particularly 
satisfactory. Additional effort is required to identify and apply the correct constraints to 
obtain a good solution. This effort is required because, in many instances, the true 
underlying factors cannot be determined based on non-negativity alone. In some cases, 
infinitely many solutions can satisfy non-negativity and fit the data equally well. 

Self-Modeling Mixture Analysis 

Techniques to resolve (decompose) spectral data sets into spectra and their contributions 
were originally known under the term self-modeling curve resolution. In this section, 
discrimination is made between techniques that rely on continuity in the data and 
techniques that do not. Techniques that rely on continuity will be referred to as self-
modeling curve resolution (SMCR) or multivariate curve resolution (MCR). Techniques 
that do not rely on continuity, the subject of this section, will be referred to as self-
modeling mixture analysis (SMA). This section has two parts. The first part is a tutorial 
that explains the mathematical principles and MATLAB code to perform self-modeling 
mixture analysis. The focus of the explanation is based on a geometrical representation. 
The second part of the tutorial explains how to use the software with a variety of data 
sets. 



227 

If the reader is familiar with the pure variable concept, he or she can go directly to the 
Tutorial of Purity Model Builder, where the use of the program is explained. 

Tutorial of mathematical principles 

This tutorial will describe the pure variable method for self-modeling mixture analysis 
(SMA). Self-modeling mixture analysis is a series of algorithms to resolve (decompose) 
spectral mixture data into pure component spectra and their contributions without using 
prior information about the mixtures. A truly pure variable, e.g., the response at a specific 
wavenumber for IR spectra, or an m/z value for mass spectra, is a variable that has 
intensity contributions from only one of the components of the mixtures. Therefore, a 
truly pure variable is one that is selective for only a single analyte. This tutorial aims to 
give a good understanding of the pure variable method using a minimal amount of 
mathematics. Furthermore, this tutorial is not meant to present a literature overview. 

Purity-based methods can be applied in an automated sense with minimal user 
intervention. However, an important aspect of the method presented here is that it can be 
used interactively, allowing users to guide the solution. This is often necessary because in 
a practical environment, spectral data sets are generally not based on a careful 
experimental design; samples often originate from a manufacturing process with only a 
single or very few samples available; or spectra shift due to temperature changes during 
the manufacturing of materials. The latter can result in problems for kinetic modeling. It 
is difficult to generate algorithms that automatically deal with all these problems and 
often human guidance is required. An interactive approach enables the user to account for 
deviations from the ideal mixture model and implement chemical and physical 
knowledge into the SMA decomposition. 

Pure variable methods are often used to initialize other algorithms such as the ALS 
algorithm discussed above (see Windig et al., 2002; Windig et al., 2005; Gallagher et al., 
2003a; Gallagher et al., 2003b).  

Pure Variable Concept 

As mentioned above, SMA resolves (decomposes) mixture data into pure component 
spectra and contributions without using prior information about the mixtures. The model 
is based on Equation (9-1) and is illustrated in Figure 9-10.  
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Figure 9-10. Panels (a) and (b) show spectra a  and b  of pure components A and B. 
Panels (c) and (d) show mixtures of these two components, 1x  and 2x . Since a  has a 

peak around 25, where b  does not have a peak, the intensity at 25 in 1x  is a measure of 
the amount of a  in 1x . As a result, variable 25 is a pure variable for a . Similarly 

variable 75 is a pure variable for b . 

In Figure 9-10a, the 1 100x  spectrum a  of pure component A is given. In Figure 9-10b, 
the  1 100x  spectrum b  of pure component B is given. In Figure 9-10c a  1 100x  mixture 

1x  of these two components is given (solid line). The mixture spectrum 1x  in Figure 9-
10c contains a 75% contribution of component A, indicated with a dotted line, and a 25% 
contribution of component B, also indicated with a dotted line. The 1 100x  mixture 
spectrum 2x  in Figure 9-10d contains a 25% contribution of a  and 75% contribution of 
b . Purity-based self-modeling mixture analysis has the following task: given only the 
mixture spectra in Figure 9-10c and 9-10d, 1) estimate the pure component spectra in 
Figure 9-10a and 9-10b; and 2) calculate their contributions in the mixture spectra (the 
numbers in the headers of Figure 9-10c and 9-10d). The term “contributions” is used 
instead of “concentrations” since, at best, we can only expect values that are proportional 
to concentrations (please see the discussion in the previous section regarding 
multiplicative and rotational ambiguities). To obtain concentrations in usable units, at 
least one calibration sample is necessary. 
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To show that the task stated above can be completed, the pure variable concept needs to 
be introduced. In the spectrum in Figure 9-10c, the line labeled 1i  is at a pure variable of 
component A, since only component A has intensity at that variable, and component B 
does not. Similarly, the line labeled 2i  in Figure 9-10c is at a pure variable for component 
B. The lines labeled 3i  and 4i  in Figure 9-10d are at the same pure variables. It is 
important to realize that the variable is pure for a certain component with respect to all 
other components. As a consequence, the purity of a variable is not just a function of a 
certain component, but also of all other components in the mixture. 

Before continuing, it must be realized that not just variable 25 is pure for a ; variables 1 
through 25 are all pure for a , and variables 75 through 100 are all pure for b . Variables 
at 25 and 75 were chosen because they are pure and they have a relatively high intensity. 

When the pure variables are known (how to determine the pure variables without 
knowing the pure component spectra will be explained later), it is possible to calculate 
the spectra of the pure components as rationalized by the following equations. 

 1 2 1

3 4 2

i i
i i

+ =
+ =

a b x
a b x

 (9-9) 

 1 2 1

3 4 2

i i
i i
    

=    
    

xa
xb

 (9-10) 

In Equations (9-9) and (9-10), 1i  represents the intensity at the pure variable of the 
unknown component a , and 2i  represents the intensity at the pure variable of the 
unknown component b . Since 1i  and 2i  are intensities at pure variables, they are 
proportional to the concentrations of the unknowns a  and b . 

What the equations state is that an amount 1i  of the unknown a  plus an amount 2i  of the 
unknown b  result in the first mixture spectrum 1x . Similarly, the second equation 
represents the composition of the second mixture spectrum. The variables 1i , 2i , 3i , 4i , 

1x  and 2x  are known and desired unknowns are a  and b . As a consequence there are 
two equations with two unknowns, which can be solved. 

It must be realized that the above description is a simplification of the decomposition 
problem, since a , b , 1x  and 2x  are not single numbers, but series of numbers, i.e., 
vectors. It could be envisioned that there is one set of equations for each of the 100 
channels in the spectra. Also the matrix of coefficients often has more than two rows 
(there are more mixtures than unknown components); therefore, least squares solutions 
are needed in practice (since the system of equations is over-determined). At this point, 
the intent is to show the reader the principle that it is possible to estimate the unknown 
spectra, once the pure variables are known. MATLAB code to solve these problems is 
given below. 
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Since knowledge of the pure variables holds the key to the pure component spectra, 
determination of the pure variables is a valid approach for SMA. To resolve a mixture 
data set with the pure variable approach, pure variables must be present. This means that 
spectral channels must exist that are selective for each of the components present. If the 
variables are not pure, results will likely not represent pure component spectra but instead 
will be linear combinations of them (i.e., the results may be hampered by a rotational 
ambiguity). However, as is shown later, second derivative data can often be used to 
enhance selectivity. As will be shown below, pure variables have properties that make it 
possible to determine them by simple means. 

Determination of Pure Variables from Pure Component Spectra 

In Figures 9-11a and 9-11b, the pure components a  and b  are shown and the pure 
variables are indicated by symbols. Although a  and b  are shown as continuous profiles, 
they are defined by discrete values. Points representing a  and b  are plotted in Figure 9-
11c. The x-axis represents contributions of a  and the y-axis represents contributions of 
b . By definition the contributions of pure A and pure B are 1 and a mixture of 50% a and 
50% b  lies on the line between the points a  and b . The plotted points at [0,1] and [1,0] 
represent the pure spectra. 

Points representing spectral variables can also be plotted. For example, in Figure 9-11d 
Variable 25 (also indicated with a triangle in Figure 9-11a) has a value of about [0.5 0]. 
Values for all 100 variables are plotted in Figure 9-11d. For the techniques discussed 
here, the actual position of the variable points is not important, but the direction from the 
origin is important. Therefore, each of the 1, ,100j = …  variables are normalized to unit 
length. The results are plotted in Figure 9-11e. 

As can be seen in Figure 9-11e, the pure variables lie on the x and y-axis, which is not 
surprising considering the definition of pure variables. All the variables that are not pure 
are bracketed by the pure variables since all mixture variables (i.e., non-pure variables) 
have positive contributions from a  and b . This is a crucial property of spectral mixtures: 
a mixture consists of positive spectra and positive contributions. In Figure 9-11e the 
direction of the pure variables points coincides with the pure spectrum points. This seems 
to make sense, but as we will see below, it is not that simple.  
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Figure 9-11. The values for the two pure components a  and b  in (a) and (b) results in 
(c). Plotting the spectral variables in addition results in (d). Scaling to unit length of the 

axes results in (e). Pure variables are indicated with symbols. 

Determination of Pure Variables from Mixture Spectra 

The example in Figure 9-11 is overly simple because the pure component spectra were 
used for these plots. What happens when only mixture spectra are available? This is 
shown in Figure 9-12. Figures 9-12c-e show plots of mixture spectra 2x  versus 1x . The 
good news is that the pure variables still have the property that they bracket all other 
variables, i.e., the pure variables are on the exterior of the data set. To display the 
properties in Figure 9-12 better, a slightly different version is shown in Figure 9-13. The 
figure is essentially the same, but the spectral points are labeled with their mixture 
composition. 
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Figure 9-12. Mixture spectra 1x  (a) and 2x  (b) (the true unknown pure component 
spectra are the dashed lines in panels). The pure variables, indicated with a circle and a 

triangle, bracket all the other variables (d) and (e). 

 

Figure 9-13. The same plot as in Figure 9-12d, but now with vectors representing the 
pure variables. The two stars indicate the mixture spectra from Figure 9-12a,b. All other 

possible mixtures lie in a line through these two stars. 
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Next the spectra of the pure components a  and b  are determined under the assumption 
that 1i , 2i , 3i , 4i , 1x , and 2x are known and recognizing that the difference 1 2∆ = −x x x  is 

0.5 0.5∆ = −x a b . This result can be used to give 1 0.5= + ∆a x x  and 2 0.5= − ∆b x x . [A 
general solution can be obtained by performing elementary row operations on Equation 
(9-10) (see Chapter 3, Introduction to Linear Algebra, for details); however, when the 
number of rows in the coefficient matrix is larger than the number of unknowns least 
squares is used. The solution for a  represents a lengthening of 1x  by half the distance 
between the two mixtures (see Figure 9-14). Note that the spectral points representing the 
pure spectra do not coincide with the spectral points of the pure variables! Also, the 
estimates of a  and b  are at unknown concentrations (and pathlength) and, as a result, are 
often normalized to unit length. At first glance it might appear that the estimated a  has 
negative intensities because it is below the horizontal x-axis. However, it should be 
remembered that the x- and y-axes correspond to mixtures and ( ) 1 21 0.25 0.25= + −a x x . 

 

Figure 9-14. The same plot as in Figure 9-13, but now the points representing the pure 
spectra have been added, labeled with a  and b , respectively. The two stars indicating the 
mixture spectra from Figure 9-12a and b. All other possible mixtures lie in a line through 

these two stars. 

Determination of Pure Component Spectra from Pure Variables 

In an effort to be more clear, Figure 9-14 is explored in more detail. An interactive 
MATLAB function purvarmixturedemo is available to reproduce the results in Figure 9-
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15. These spectra (also calculated and displayed by the purvarmixturedemo function) 
are based on the original variables, not the variables scaled to unit length. In Figure 9-15a 
the direction of the 1x  axis shows, not surprisingly, the spectrum of mixture 1x . At first 
thought, it might be expected that plotting the spectrum in the direction of the pure 
variable axis a  that the pure component spectrum of a  would result (see Figure 9-15b). 
However, the spectrum is not the pure component spectrum of a  but is instead a mixture 
spectrum. Changing the direction further (Figure 9-15c) shows another mixture spectrum 
(as should be expected because this direction is interior to the pure variables). This is 
clearly the wrong direction for finding the spectrum of pure a . Moving away from the 
center clock-wise yields the spectrum of a  (Figure 9-15d). This direction corresponds 
with the previously determined spectral point of a  (Figure 9-14). Moving further in the 
clock-wise direction gives a spectrum with negative intensities (Figure 9-15e). In this 
case, the negative values suggest an incorrect direction. 

Figure 9-15. Similar plot as in Figure 9-14, but with different estimates of the pure 
component spectrum for a . The two stars indicating the mixture spectra from Figure 9-

12a,b. All other possible mixtures lie between these two stars. 

SMA attempts to answer the following question: what determines the direction 
corresponding to pure component a  when information used to plot the spectral point a  
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in Figure 9-14 is unavailable? The answer lies in the pure variable concept. The spectral 
point of a  must not have signal from b . This is the definition of a pure variable or 
selective variable: a selective variable is one that includes signal from only a single 
analyte and has signal free from interferences. As a result, the direction of the spectrum 
of a  is orthogonal to the pure variable of b . Closer inspection of Figure 9-14d shows 
that this is indeed the case. Similarly, the spectrum of b  can be found, as indicated with a 
solid circle in Figure 9-15. 

To summarize the principle of the pure (selective) variable refer back to Figure 9-14. 

a) Pure variables (indicated with an open circle and an open triangle) bracket all other 
variables i.e., selective variables are on the exterior of the data set. 

b) Pure spectrum directions for each analyte are orthogonal to pure variable directions of 
all remaining analytes and interferences. 

MATLAB Code for Pure Variable Method 

The question now is how to put all these pictures in a workable algorithm. To 
demonstrate the algorithm, a more realistic data set will be created of a mixture of two 
components. The first data set is purvardata, which does not contain noise. The second 
data set is purvardata_noise, which contains the same spectra with added noise. A plot 
of the two pure components and the contributions of these components in the mixtures is 
given in Figure 9-16. 

Figure 9-16. The components A and B from which the data sets have been constructed, 
using the contributions listed below. 
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Contributions 
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The noise-free spectra and spectra with noise are shown in Figure 9-17. Noise was added 
as a uniform random distribution between +0.00025 and –0.00025, which is 
approximately 1%± of the maximum intensity. 

 

Figure 9-17. The demonstration data sets: (a) without noise, (b) with added noise. 

To determine the first pure variable, the objective is to find one variable that brackets all 
the others (that is, a variable that is on the exterior of the data space). To do this, a 
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reference vector is first established. For this example, a vector with ones is used (the data 
set mean could also be used). The angle between this vector and all the other variables in 
the data set can be found using the MATLAB function subspace. Since it is common to 
work with degrees instead of radians, the output is converted to degrees. The first pure 
variable is found by determining the variable with the largest angle with the reference 
vector of ones using the following MATLAB commands: 
 
>> load purvardata 
>> [nrows,ncols] = size(data); 
>> for i=1:ncols 
>>   angle0(i) = subspace(data.data(:,i),ones(nrows,1)); 
>> end 
>> angle0 = 180*angle0/pi; 
>> [dummy,pure_variable_index] = max(angle0) 
dummy = 
    20.7826 
pure_variable_index = 
    99 

The first pure variable is at index 99, although variable 75 might have been expected. It is 
not yet known which component the first pure variable corresponds to. Although variable 
75 seems more appropriate than 99, “purity” as calculated here does not depend on 
intensity, so variable 99 is expected to have less overlap with the other component. A plot 
of the angle and a star indicating the pure variable is shown in Figure 9-18a, which is 
based on the following MATLAB command. 
 
>> subplot(4,1,1),   plot(data.axisscale{2},angle0, ... 
data.axisscale{2}(pure_variable_index),angle(pure_variable_index),'k*') 

The same plot can be made for the data set purvardata_noise using the commands 
given above, with the exception that the first line is: 

>> load purvardata_noise 

A plot of the known contributions for both data sets is based on the following MATLAB 
command (Figure 9-18 c and d): 
 
>> plot(data.userdata.purint(:,2),... 
  data.data(:,pure_variable_index),'*k') 
 
As can be observed in Figure 9-18b and d, the noise causes problems for the estimation 
of the pure variable. Although the estimated pure variable is the same for the noiseless 
and the noisy data set in this case, this is not typical. The problem lies in the fact that pure 
variables bracket all other variables. In other words, the pure variables are the most 
independent variables. Since noise is by definition independent of the signal, a noisy 
variable behaves like a pure variable. This can be observed by comparing Figure 9-18a 
and b. Although the variables 80-99 are basically equally pure in (a), the low intensity 
variables (with relatively higher noise) tend to get a higher purity in (b).  
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Figure 9-18. A plot of the angle of a variable from a vector of ones: (a) noiseless data set 
and (b) data set with added noise. The original contributions of B are plotted for the pure 

variables for the noiseless data set (c) and for the data set with noise (d). 

Since, in general, low-intensity variables contain low signal-to-noise, a correction factor 
needs to be developed. The signal-to-noise is generally inversely related to the measured 
value, leading to the following proposed noise correction factor: 
 
>> load purvardata_noise 
>> offset = 3; 
>> mean_data = mean(data.data); 
>> max_mean_data = max(mean_data); 
>> offset_relative = (offset/100)*max_mean_data; 
>> correction_factor = mean_data./(mean_data+offset_relative); 

The correction factor is plotted in Figure 9-19a and is multiplied by the angles calculated 
above prior to estimating pure variables. 
 
>> angle_corrected = correction_factor.*angle0; 

For variables with a high mean value, the correction factor is near one and will have little 
effect on the estimated angle. For variables with a low mean value, the offset will be 

Angle of purvardata with vector of ones

Angle of purvardata_noise with vector of ones
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significant; as a consequence, the correction factor will be small. The result is that the 
estimated angle for these variables is decreased, making them appear “less pure.”  The 
corrected angles are plotted in Figure 9-19b with the maximum indicated. As can be 
observed in Figure 9-19c, the correction results in a pure variable that is not dominated 
by noise. 

>> pure_variable_index = find(angle_corrected == max(angle_corrected)); 
>> plot(data.axisscale{2}, angle_corrected,... 
        data.axisscale{2}(pure_variable_index),... 
         angle_corrected(pure_variable_index), 'k* ') 
>> plot(data.userdata.purint(:,2),... 
        data.data(:,pure_variable_index),'*k'); 

 

Figure 9-19. The correction factor (a) and the corrected angle plot in (b). The 
contributions of B versus the contributions of the pure variable are given in (c). 

At this point in the analysis, one pure variable has been determined. Note that the angle 
spectrum has limited similarity to the original spectra in the data set and the angles do not 
reflect the original intensity of the variables. To create a spectrum that reflects the 
intensities in the original data, variables are multiplied by their length (two-norm) given 
by: 
 
>> length_data = sqrt(sum(data.data.*data.data)); 
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In Figure 9-20, the angle spectrum (a) is shown with the length (two-norm) spectrum next 
to it (b). Each value in the “length spectrum” is the corrected angle value multiplied by 
the corresponding two-norm.. 
 
>> angle_corrected_length = angle_corrected.*length_data; 
>> plot(data.axisscale{2},angle_corrected_length,... 
        data.axisscale{2}(pure_variable_index),... 
         angle_corrected_length(pure_variable_index),'k* ') 

The second pure variable is the variable with the largest angle from the first estimated 
pure variable calculated as follows: 
 
>> for i=1:ncols 
>>   angle0(i) = (180/pi)*subspace(data.data(:,i), ... 
>>                   data.data(:,pure_variable_index)); 
>> end 
>> angle_corrected = correction_factor.*angle0; 
>> pure_variable_index = [pure_variable_index; 
>>                  find(angle_corrected == max(angle_corrected))] 
 
pure_variable_index = 
 
    81 
    21 

The result of the pure variable selection is shown in Figure 9-20c and d. Two pure 
variables have now been estimated, and these define a plane, as any two vectors do. 
When the next angle spectrum is calculated, the subspace command searches for a third 
pure variable, which has the largest angle with this plane. Repeating the MATLAB 
commands immediately listed above yields 
 
pure_variable_index = 
 
    81 
    21 
    99 

The results are shown in Figure 9-20e and f. It is obvious from these results that there are 
only two pure variables present because both the estimated angle and the length spectrum 
are small. After selecting two pure variables, only noise is present. 
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Figure 9-20. The successive series of angle spectra and length spectra. The pure variables 
are indicated with a star: 81 (a,b), 21 (c,d), and 99 (e,f). 

At this point, it has been determined that the data set has two pure variables. Next 
estimates of the pure component spectra and contributions are obtained. For this we’ll put 
Equations (9-9) and (9-10) into a more formal form. Equation (9-1) is rewritten: 

 T= +X CS E  (9-11) 

where X  is a m n×  matrix of the original data with the spectra in rows, C  is a m k×  
matrix of contributions, and S  is a n k×  matrix with columns corresponding to pure 
component spectra. k  is the number of analytes present in the data matrix; it is the 
number of pure variables estimated. In the pure variable technique, an estimate of C  is 
obtained by taking the columns of X  that represent pure variables, and for clarity the 
notation Ĉ  will be used for this. (Recall that the values of the pure variables are not 
concentrations; they are proportional to concentrations, and are referred to as 
contributions.) The m n×  matrix E  represents the residual error, which is minimized in 
the least squares equations shown below. 

The purity technique estimates Ĉ  from the columns of X  and both are known. The next 
step estimates Ŝ  from  

 ˆ ˆT T+=S C X  (9-12) 
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where ( ) 1ˆ ˆ ˆ ˆT −
+ =C C C C  with the property ˆ ˆT+ =C C I . In the next step, the contributions are 

now calculated from Ŝ  from 

 ˆ +=C XS�  (9-13) 

where ( ) 1ˆ ˆ ˆ ˆT −
+ =S S S S . This step reduces the noise in the contributions and this procedure 

corresponds to a single iteration of the ALS algorithm discussed above. We can 
implement this procedure on the data from the example above using MATLAB. The pure 
variable indices obtained above were: 

 >> pure_variable_index = [81 21]; 

First, these are extracted from the data matrix to a matrix purint that corresponds to Ĉ . 

>> purint = data.data(:,pure_variable_index); 

To calculate the pure spectra ˆ TS  we use the following command and assign the pure 
spectra to the matrix purspec: 
 
>> purspec = pinv(purint)*data.data; 

Next, the spectra are normalized to unit length. In terms of Figure 9-15, the direction of 
the pure spectra are known, i.e., the pure spectrum axes, but what’s needed is where the 
pure spectrum axis intersects the mixture line. This is simply done by normalizing the 
spectra to a total intensity of 1: 
 
>> purspec = normaliz(purspec); 

The matrix purint corresponding to Ĉ is estimated from purspec: 
 
>> purint = data.data*pinv(purspec); 

The estimated purint is based on normalized data in the least squares calculation, and is 
expected to have less noise then the original pure variables. The following commands are 
the basis for Figure 9-21. 
 
>> subplot(2,2,1);plot(data.axisscale{2},purspec(1,:),'k'); 
>> subplot(2,2,2);plot(data.axisscale{2},purspec(2,:),'k'); 
>> subplot(2,2,3);plot(data.userdata.purint(:,2),purint(:,1),'*k'); 
>> subplot(2,2,4);plot(data.userdata.purint(:,1),purint(:,2),'*k'); 
The procedure outlined above showed all the calculations needed for the purity 
technique. To learn more about the pure variable method, type purityengine demo or 
purity demo at the command line. 
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Figure 9-21. Resolved spectra (a) and (b), and resolved contributions (c) and (d). 

Tutorial for Purity Model Builder 

This tutorial is limited at this point to showing the use of Purity in the Analysis GUI. 
Familiarity with the purity concept is assumed. A summary of concepts: 

a) A pure variable (e.g., a wavenumber) is a variable that has contributions from only one 
component. 

b) The values of a pure variable are directly proportional to the concentrations of the 
associated component. As a consequence, when all pure variables are known the spectra 
of the pure components can be calculated. 

c) The purity programs demonstrated here determine the pure variables in a stepwise 
interactive manner: when the user sets a pure variable, the intensities of the variables 
associated with that component will diminish proportionally 

Four different uses of the program will be demonstrated. Before using this tutorial one 
should first run: 
 
>> puritydemo 
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It is important to do this, since more information is given about the data files. 
Furthermore, reference spectra are plotted in the demonstration which are needed to 
judge the solutions. 

In the text below, the variables or spectra selected by the program are referred to as pure 
variables or pure spectra. Although these variables/spectra are the purest mathematically, 
this does not mean that they are pure from a chemical point of view. When the pure 
variables/spectra are chemically pure, the terms proper pure variable and proper pure 
spectrum will be used. 

The Purity Model Builder Interface is spawned from the Analysis window using the 
Show Purity Model Builder button in the toolbar. After loading new data into the 
Analysis window, it will be the only button enabled. Clicking it will bring up the "Model 
Builder" interface. Initially the interface will have one toolbar and a Purity menu (see 
Figure 9-22). If either of the derivative buttons is clicked, a second toolbar will appear 
with buttons specific to the additional plots generated. Table 9-1 describes the function of 
each button/menu selection. 
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Table 9-1. List of Purity GUI menu items and buttons. 

Name Description 
Menu 
Transpose Transpose matrix to get pure spectra rather than pure 

variables. 
Inactivate Inactivate Selected/Zoomed Area of Purity Spectrum. 

Colors selected portion of x-axis red and ignores area when 
determines the maximum in the purity spectrum.  

Reactivate Reactivate Selected/Zoomed Area of Purity Spectrum. Undo 
Inactivate. 

Max Set Cursor to Maximum Purity Value(s). 
Plot Spectrum Plot of original spectra and (if available) the reconstructed 

data. 
Resolve Resolve spectra and contributions for selected pure 

variables. 
Continuous/Discrete  This determines if the plot is continuous, discrete of bar. 

The default is continuous for rows (variable plots) and 
continuous for columns (spectrum plots). This is indicated 
in the figure, left top, as cc. Pressing the button goes 
through all the combinations of continuous, discrete and bar. 

Accept Load model back into Analysis and close Purity Model 
Builder.  

Conventional (top) Toolbar 
Set Pure Variable Set Pure Variable at cursor. 
Reset Remove last variable. Undo result of 'Set Pure Variable' 
Plot at Cursor Plot Variable At Cursor 
Cursor Manually move cursor to new location. 
Increase Offset  Down weight variables. 
Decrease Offset  Up weight variables. 
Window Derivative 
Increase 

Increase derivative window. Will create second set of plots 
if not already displayed. 

Window Derivative 
Decrease 

Decrease derivative window. Will create second set of plots 
if not already displayed. 

Derivative (bottom) Toolbar [not displayed in default view] 
Set Same as above but acting on derivative plots. 
Increase Offset  Same as above but acting on derivative plots. 
Decrease Offset  Same as above but acting on derivative plots. 

 

The examples below cover interaction with the "Model Builder" interface. Once a model 
has been resolved, it can be loaded back into the Analysis window using the Accept 
selection from the Purity menu. One can then further explore and use the model.  
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Note: Purity is an entirely new method to PLS_Toolbox. As such, not all tools in the 
Analysis interface are compatible with Purity models.  

Example: Raman Spectra of Time-Resolved Reaction 

To get started, load the demonstration data and open the Analysis interface using the 
following commands: 
 
>> load raman_time_resolved 
>> analysis 

The next step is to load the demo data into the Analysis window using File/Load 
Data/X-Block. The demonstration data set contains time-resolved Raman spectroscopic 
data of four components. Next, go to the Analysis menu and select Purity. Click on the 
Perform Purity Analysis button in the Analysis window toolbar (gears icon) to bring up 
the Purity Model Builder GUI (Figure 9-22). The top spectrum is the length spectrum, 
which has the same units as the original spectra and therefore is easily to relate to the 
original. The second spectrum is the purity spectrum, of which the maximum indicates 
the purest variable in the data set. 

Figure 9-22. The main figure for interactive Purity analysis. Offset is shown in axis title. 

The first part of the demonstration will show the effect of the offset, which is a noise 
correction factor. The offset is shown above the length spectrum. Its current value is 3. 
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By clicking on the 'Decrease Offset' button three times, the offset is changed to the value 
0, which results in Figure 9-23.  

Figure 9-23. Offset decreased to zero. 

The first pure variable, indicated by the cursor, is accepted by clicking the Set Pure 
Variable button (the tack icon); clicking it again will set the second pure variable and 
result in Figure 9-24. The previously-selected pure variables are indicated with green 
markers. 
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Figure 9-24. Two pure variables set (indicated by green marker). 

Figure 9-25. Plot of third pure variable. 
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The pure variable indicated in the figure above by the red cursor is not a good pure 
variable. As can be judged from the length spectrum, this is a low intensity variable. A 
plot of this variable also shows its noisy character. This plot can be obtained by clicking 
the option Plot At Cursor (Figure 9-25).  

Next to a plot of the variable at the cursor (left plot) is a plot of the total signal of all the 
spectra (as a function of spectrum number) and the least squares approximation of the 
pure variables set that best reproduces the total signal so far. It is obvious that two pure 
variables are not enough. The coefficients of the pure variables to obtain the best least 
squares approximation are also listed. When the proper number of pure variables has 
been chosen, the total signal should be reproduced properly and all the coefficients 
should be positive.  

Figure 9-25 shows the noisy character of the variable at the cursor position. This 
represents a problem with the pure variable approach. Pure variables are the most linearly 
independent variables, but so are noise variables. An approach to avoid this spectral 
region is by inactivating it. First we return to the main figure by clicking on ‘return’ (the 
red "X" icon). Inactivation is done as follows: 

Figure 9-26. Zooming in on third pure variable.  

a) Use the MATLAB figure toolbar to activate zoom  and draw a rubber band box as 
indicated in Figure 9-26. The figure will zoom into this part (not shown). 

b) Select Inactivate from the Purity menu (as shown in Figure 9-27). 
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The result is shown in Figure 9-27, where the x-axis of the area we zoomed is colored 
red. The result of this is that this area is ignored when the program determines the 
maximum in the purity spectrum. In this way we can ignore problematic regions in the 
spectrum, such as this noisy low-intensity area. 

Figure 9-27. Inactivated region and menu. 

Figure 9-28. Four pure variables set. No remaining spectral information. 

The program will automatically go to the new maximum (the same can be achieved by 
selecting Max from the Purity menu). Then accept the pure variable indicated by the 
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program by clicking on Set Pure Variable. Set the next pure variable by clicking the 
button again and the result will be Figure 9-28, which shows that there is no spectral 
information present anymore. The Plot At Cursor plot in Figure 9-29 shows that the 
total signal is reproduced properly with the four pure variables and the coefficients are 
positive. 

 

Figure 9-29. Plot at cursor for current pure variable, showing that four pure variables 
reproduce the signal properly.  

 It may seem confusing that the current variable at the cursor does not represent noise. 
One has to keep in mind that after selecting the proper number of pure variables, one will 
have a noisy purity spectrum. The position of the maximum is basically random, so the 
variables at the maximum in the purity spectrum basically do not have any meaning from 
a purity point of view. 

After concluding that four pure variables describe the data set, the data set can be 
resolved after we return to the main figure by clicking on Return. We now resolve the 
data set by selecting Resolve from the Purity menu. This results in the resolved spectra 
in Figure 9-30. Clicking on the Next button (blue arrow icon) in the figure results in the 
resolved contribution profiles in Figure 9-31. 
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Figure 9-30. Resolved spectra.  

 

Figure 9-31. Resolved contributions.  
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Clicking the Next button again will return to the previous length and purity spectrum 
(Purity Model Builder). Clicking twice on the Reset Last Variable button resets the last 
two pure variables. We now zoom again into the area we just inactivated (colored red), as 
indicated in Figure 9-32.  

 

Figure 9-32. Reactivating selected area.  

Reactivate the selected area by selecting Reactivate from the Purity menu. The figure 
should now look similar to Figure 9-24; the cursor automatically moves to the maximum. 

We will now show an alternative to inactivating the region of 450-520 cm-1. In order to 
correct problems with low-intensity variables, we can down-weight them by using the 
offset. By increasing the offset, the problematic area is decreased in intensity and the pure 
variable becomes acceptable. We increase the offset to 3 using the Increase Offset 
button, which is a good default value for the offset, followed by using the Reset Last 
Variable button twice, which results in Figure 9-33. 
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Figure 9-33. Offset equals 3 with no pure variables selected. 

Figure 9-34. Four pure variables selected with offset at 3. 
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When we accept the first four pure variables now, by clicking the Set Pure Variable 
button four times, we obtain Figure 9-34, with no problems with low intensity variables.  

After determining the pure variables, selecting Resolve from the Purity menu results in 
resolved spectra and contributions very similar to those shown in Figures 9-30 and 9-31 
above.  

A final check of the solution can be done by selecting Plot Spectrum from the Purity 
menu. This results in a plot of the original spectra, the spectra reconstructed from the 
resolved contribution profiles and spectra, and the differences between the two. See 
Figure 9-35.  

Figure 9-35. Plot of original, resolved, and difference spectra.  

The rrssq value is a relative measure for the differences between the reconstructed and 
the original data set. In this case the difference is approximately 1.5%, which is a very 
good value. 

FTIR Microscopy Example 

This example uses FTIR microscopy spectra of a three-layer polymer laminate. We shall 
explore the use of second derivative pure variables. 

Load the data and start the interface:  
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>> load FTIR_microscopy 
>> purity 

Note: One can start the Analysis interface pre-selected to Purity by simply typing purity 
at the command line. 

Figure 9-36. Resolved spectra for FTIR example. 

Figure 9-37. Resolved contributions for FTIR example. 
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Resolve three components in the same fashion as in the first example using the default 
settings. This will result in the resolved spectra and contribution profiles in Figures 9-36 
and 9-37. 

The resolved contribution profiles clearly indicate that the pure variables are not proper 
(for more information, run purity demo). After returning to the main program, we first 
reset the three pure variables by clicking on the button Reset Last Variable three times. 
Next we will use second derivative spectra by clicking the Window Derivative Increase 
button  four times. The smoothing window for the Savitzky-Golay procedure for 
calculating second derivative spectra now has a size of 9, as is listed at the top of the 
length spectrum (see Figure 9-38). 

Figure 9-38. Savitzky-Golay window increased four times. 
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  The major differences in the figure when in Window Derivative mode are: 

a) Both the conventional and the second derivative data are shown. 

b) There are two series of buttons (two toolbars) for setting pure variables and 
increase/decrease offset. The buttons and plots dealing with derivative data have a yellow 
hue. 

c)  For the offset, two values are listed. The first one is for the conventional data, the 
second one is for the second derivative data. 

We will click three times on Set Pure Variable in the bottom series of buttons. 
Resolving the data results in Figures 9-39 and 9-40, which are the correct results. 

Figure 9-39. Resolved spectra for FTIR example. 
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Figure 9-40. Resolved contributions for FTIR example. 

Raman Spectra Combined Example 

This example combines the use of conventional and second derivative pure variables. 

Load the data and start the interface:  
 
>> load raman_dust_particles 
>> purity 
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Figure 9-41. Resolved spectra. 

 
This example has narrow peaks, identifying the components of the mixtures, and a broad 
baseline caused by fluorescence. Using the conventional data and extracting four 
components (the three components in the mixture, plus the baseline) results in the 
resolved spectra in Figure 9-41. 

The third resolved component is the baseline, on which the resolved components reflect 
negatively. Using just the second derivative does not resolve the data properly, mainly 
because the broad baseline in not present in the second derivative data. A combination of 
the conventional and second derivative pure variables needs to be used. For this we reset 
all the pure variables and, using the Windows Derivative Increase button several times, 
we set the derivative window equal to 9. Since spectra with a baseline such as these have 
a high "natural" offset, it is best to set the offset for the conventional data to zero using 
the n Decrease Offset button on the top toolbar (see Figure 9-42). 
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Figure 9-42. Window derivative set to 9 and offset decreased to zero. 

We can now set the first four pure variables "suggested" by the program (indicated by the 
red colored cursor). The first pure variable is conventional (the red cursor appears in the 
top two plots in the figure), the other three pure variables are second derivative (the red 
cursor appears in the bottom two plots; remember to set these pure variables using the 
derivative (bottom) toolbar, resulting in the resolved spectra in Figure 9-43. 
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Figure 9-43. Resolved spectra with conventional and second derivative pure variables. 

The results show a well-defined background spectrum and the three resolved 
components. However, there is still a problem in the resolved components with some 
baseline contributions, especially in the fourth resolved component. Therefore, we will 
try to extract an additional baseline component. The pure variable in the conventional 
spectrum is at a peak which we already have chosen as a pure variable in the 2nd 
derivative data. Therefore, we inactivate this area and obtain the next pure variable in the 
conventional spectrum. Zoom in on the area shown by the red peak in Figure 9-44, select 
Inactivate from the Purity menu, and then the cursor will automatically move to the new 
max. 
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Figure 9-44. Inactivating area and selecting new pure variable. 

The pure variable indicated in the conventional data is a good candidate for the 
background spectrum and is “set” using the conventional (top) toolbar. Please note that 
the pure variable in the second derivative spectra has a higher value (the cursor is red), 
but based on visual inspection it was decided to select the conventional pure variable. 
The high purity value in the second derivative data was caused by a residual of a 
previously selected pure variable, which can be caused by slight peak shifts or which can 
be an artifact of the use of second derivative spectra. More information can be found in 
the literature. 

The resolved results are shown in Figures 9-45 and 9-46. It is clear that the background 
contribution in the resolved component spectra is minimized. 
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Figure 9-45. Resolved spectra. 

 

Figure 9-46. Fifth resolved spectrum. 

 

MS Time-Resolved Example 

This example demonstrates a pure spectrum to pure variable solution. Load the data and 
start the interface: 
 
>> load MS_time_resolved  
>> purity 

For MS (mass spectroscopy) data, the pure variable approach is not always easy to apply. 
Due to the discontinuous character of the mass spectral data, it is not easy to judge 
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visually whether a spectrum represents noise or signal. Furthermore, the programs that 
compress the profile data into centroid data often introduce problems. However, MS data 
often do have pure variables. A way around the problems with pure variables is first 
determining the pure spectra, followed by deriving the pure variables from the pure 
spectrum solution.  

 

Figure 9-47. Time-resolved MS data loaded into the Purity Model Builder. 

We want to analyze the pure spectra instead of the pure variables; this can be achieved by 
basically transposing the matrix. This is done by selecting Transpose from the Purity 
menu, resulting in Figure 9-48. 



266 

Figure 9-48. Transposed data. 

After setting three pure spectra and selecting Resolve, we see a window asking us if we 
want to calculate the pure variable solution after calculating the pure spectrum solution. 
We also see the following statement: 

“Reminder: offset change for pure variable calculations may be desirable.” 

The reason is the following. The offset is used for both the determination of the pure 
spectra and the pure variables. The appropriate offset may be different for the variables 
and the spectra. For example, if no low noise level intensity spectra are present, the offset 
value of zero can be used for the pure spectra (this would work for this example). 
However, a zero value for the determination of the pure variables is likely to give 
problems because of noisy variables. Therefore, one might change the zero value for the 
offset used to determine the pure spectra to 3 prior to the pure variable resolution step. 
We will not change the offset for this example. 

After answering the question with Yes, the resolved results appear (Figure 9-49). 
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Figure 9-49. Resolved results  for  the time-resolved MS example. 

Interactive Programs for Variable Selection Using Hyphenated Techniques 

Introduction  

This section describes the interactive programs to analyze MS data from hyphenated 
techniques. There are two programs. The first program, coda_dw_interactive, selects 
the best mass chromatogram based on the smoothness. The second program, 
comparelcms_sim_interactive, extracts differences between highly related samples, 
e.g., different batches of the same material of which one batch is problematic. 

CODA_DW_INTERACTIVE 

To start the program, type: 

» coda_dw_interactive 

The dialog box to read the file comes up. Locate the file lcms.mat in the dems folder of 
your PLS_Toolbox installation. Alternatively, the file lcms.mat can be loaded in the 
work space prior to starting the program and then read into the program. 
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Figure 9-50. lcms.mat demonstration DataSet Object at default settings. 

After reading in this file the windows in Figure 9-50 will appear. The top plot, in the 
Main Plot window, shows an overlay plot with all the mass chromatograms. As the title 
shows, there are 1451 chromatograms. 

The second (middle) plot shows the variable selection of the algorithm. We refer to this 
as the reduced data. It is clear that only ‘good’ chromatograms are shown here. As the 
header shows, there are only 50 chromatograms which represent all the chemically 
significant information. Also listed in the header is the Durbin-Watson criterion (with a 
default value of less than 2.1). 

In the second plot, there are generally several correlated chromatograms. The third plot 
shows the results when correlated chromatograms are deleted. We refer to this as the 
super-reduced data. In this case only 16 chromatograms are necessary to describe all the 
significant chemical information, as is listed in the title. The correlation level, also shown 
in the title, is 0.65. All the variables with a correlation of greater than 0.65 are deleted; 
increasing the correlation level would delete fewer chromatograms. 

There are two sliders in the figure's Main Menu. The slider with the title #var 
determines how many variables will be displayed in the reduced data in the second plot. 
The variables are ranked by their quality, which is based on their value for the Durbin-
Watson criterion. When we increase the slider value to 75 chromatograms (this is listed 
in the title of the reduced data), which is equivalent to a level for the value for the 
Durbin-Watson criterion of 2.4, variables of a lower quality will be included (see Figure 
9-51). 
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Figure 9-51. Number of variables increased to 75 

Figure 9-52. Correlation threshold set to 0.1 
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A change of the corr slider will result in changes in the third plot. A change to the value 
0.10 (listed in the title of the super-reduced data) will delete too many variables, as we 
can see in Figure 9-52. In practice, a starting value of 0.65 appears to be appropriate. 

In practice one can make some changes in the #var slider to accommodate the data 
reduction the researcher is interested in. The changes in the corr slider are secondary. Its 
only purpose is to show a simplified version of the second figure. Once the appropriate 
results have been obtained it is possible to plot spectra at any point in the chromatogram 
which we will demonstrate below.  

When we want to select a chromatographic peak, it may be necessary to zoom in on the 

data. For this, the MATLAB zoom button  can be used. Although any of the three 
plots can be used, Figure 9-53 shows the results of zooming in on the third plot of the 
super-reduced data.  

 

Figure 9-53. Zoomed in on super-reduced plot (third plot). 
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Figure 9-54. Selecting green peak 

 

Figure 9-55. Initial spectrum plot. 
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When we want to select a peak to obtain the spectrum at that retention time, we choose 
the Display Spectrum button. This synchronizes all of the plots to the zoomed plot. We 
put the cross-hair on the green peak in the bottom plot as indicated in Figure 9-54. 
Clicking while the cross-hair is in that position results in Figure 9-55.  

The spectrum shown here is the spectrum at the retention time we selected. This is the 
original data with the following color-coding added: 

• The (in this case 50) best-quality masses selected by the algorithm are colored red 
in the bar plot. 

• When the n best quality masses have been selected and colored in red, the best 
quality masses (n+1) to 2n are colored in green. 

• The super-reduced masses are marked with colored stars. The colors of the stars 
correspond with the colors of the super-reduced mass chromatograms. 

Since we selected a green super-reduced chromatogram (Figure 9-54), the red bar has a 
green star on top (Figure 9-55). So the mass with the green star should be the same as the 
green chromatogram in the super-reduced plot. We can check this, but because of the 
resolution of the plot we will first zoom in using the regular zoom capabilities of 

MATLAB by clicking on the  button and drawing a rectangular box around the mass 
of interest. Now we will select the mass with the green star by first clicking the Display 
Time button from the Main Menu figure, which results in a cross hair, followed by 
positioning it on the mass of interest and left-clicking (Figure 9-56). 

Figure 9-56. Selecting mass of green chromatogram. 
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When we click the mouse we see the following (see Figure 9-57): 

• The chromatogram of the selected mass is plotted. 
• The mass is labeled. 

The plot of the chromatogram is straightforward. For the labeling of the mass spectrum, 
several other features are possible after clicking the Display Time button: 

• A mass can be labeled by clicking on the mass of interest. 
• In order to achieve a more appropriate labeling one can click on the mass of 

interest, keep the mouse button down and drag the cursor to a more appropriate 
position for the labeling. Releasing the button shows the label at the last position. 

• A label of a mass can be deleted by selecting that mass again and dragging the 
cursor outside the plot onto the gray-space of the figure before releasing it. 

• Before the Display Time button is selected, the MATLAB zoom capabilities are 
available. 

 

 

Figure 9-57. Zoomed at green peak mass with peak 186 selected. 
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This section showed all the options in the coda_dw_interactive program. Keep in mind 
that the sliders become inactive as soon as you select a spectrum (by clicking Display 
Spectrum) and will remain inactive until you close the Spec Plot.  

COMPARELCMS_SIM_INTERACTIVE 

To start the program type: 

» comparelcms_sim_interactive 

Locate the following 3 files in the dems folder of your PLS_Toolbox installation: 
lcms_compare1.mat 
lcms_compare2.mat 
lcms_compare3.mat 

As shown before, the files can also be loaded into the workspace prior to running the 
program and read from there. 

These three files represent batches of the same material. The first data set is a good batch, 
the second data set is a bad batch and the third data set is a batch with some problems. 
The goal is to extract the differences. 

After reading in these files, the windows in Figures 9-58 and 9-59 appear.  

Figure 9-58. Default view of demo data 
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Figure 9-59. Default settings of main menu for coda_dw_interactive program. 

The three plots show the super-reduced results of the differences between the data sets. 
The algorithm has several steps: 

a) Data reduction using coda_dw, which is set by slider coda level. The level is shown 
in the header of the top plot. The default value is 2.25. 

b) Low intensity variables can be eliminated by using the slider noise level. It is defined 
(as listed in the title) by ‘counts’, where one count is the lowest intensity change in 
the data. The default is 20. The corresponding intensity units are listed in parentheses 
(0.745 i.u. in this example). 

c) After this initial data reduction we compare the chromatograms. Since some tolerance 
for small peak shifts must be present, the data are smoothed with a simple seven- 
point averaging filter. The window size can be changed with the slider win smth. 
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d) The smoothed data are compared and a similarity coefficient is calculated with values 
between zero and one. We only want to see the chromatograms that are dissimilar, so 
the value should be low: the lower the value, the fewer chromatograms are shown. 
The default value is 0.57, as listed in the title. 

e) As described in the tutorial for coda_wq, the resulting chromatograms may have 
several mass chromatograms for a single component. The data are “super-reduced” by 
deleting highly correlated chromatograms. The correlation level for the procedure is 
set with the slider corr level. The higher its value, the more chromatograms will be 
left in. 

In practice, one would start increasing the slider coda level to see if other peaks show up, 
or lower it when too many noise variables show up. The slider noise level is intuitive, so 
changing it need not be discussed. The level of the win smth slider depends on the 
quality of the instrumental analysis and generally should not be changed. The slider sim 
level determines the level of differences we will see and varying it seems appropriate. 
The slider corr level will be constant for most applications. 

To give an example, one might want to know what the super-reduced coda_dw results 
look like. In this case one sets the slider sim level to its maximum value of one. In this 
case all super-reduced mass chromatograms will be shown (Figure 9-60). One can see 
that the full y-scale in Figure 9-60 is about 60, while the full scale in Figure 9-58 is about 
12. Comparing these figures shows that it is difficult to extract the differences between 
the different samples by visual means only. 

 

Figure 9-60. Sim level set to 1. 
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When we go back to the settings in the original configuration in Figure 9-58, (restart the 
program to get the same color coding), we can pick a chromatographic peak at a certain 
retention time and display the spectra.  

When we want to select a chromatographic peak it may be necessary to zoom in on the 

data. For this, the MATLAB zoom button  can be used. Zooming in to the central part 
of the chromatograms (we use the third plot here, but other ones can be used too) results 
in Figure 9-61. 

Figure 9-61. Zoomed in on third plot. 
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Figure 9-62. Spectrum at specified retention time (index 372). 

When we want to select a peak to obtain the spectrum at that retention time, we click the 
button select. This results in synchronizing all the plots to the zoomed plot. If we put the 
cross-hair on the purple peak around 370 and left-click, a figure resembling Figure 9-62 
will appear. The spectrum shown here is the spectrum at the retention time we selected. 
This is the original data with the following color coding added: 

a) The chromatograms with a similarity of less than 0.57 (sim level slider) are colored 
red. 

b) The super-reduced masses are marked with colored triangles. The colors of the stars 
correspond with the colors of the super-reduced mass chromatograms. 

Since we selected a purple super-reduced chromatogram (the purple peak at around 370 
from Figure 9-61), it is shown with a purple triangle on top of the red bar (Figure 9-62). 
So, the mass with the purple triangle should be the same as the purple chromatogram in 
the super-reduced plot. We can check this but, because of the resolution of the plot, we 
will first need to zoom using the regular zoom capabilities of MATLAB. So we click on 

the  button and draw a rectangular box around the mass of interest (although we can 
zoom on any of the three plots, use the third plot again); the results should look like 
Figure 9-63. Now we will select the mass with the purple triangle by using the select 
button, which results in a cross hair for clicking on the mass of interest (Figure 9-63). 
When we click the mouse we see the chromatograms of selected mass plotted (see Figure 
9-64). 
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Figure 9-63. Selecting spectrum profile for index 372 (zoomed from Figure 9-64). 

 

Figure 9-64. Profile for mass 478. 
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This section discussed all the options in the comparelcms_sim_interactive program. 
We can either select another mass in the same spectrum or close the figure and select 
another chromatographic peak. When we are working with the plot with the mass spectra, 
the sliders are inactivated. Closing all but the Main Plot will reactivate the sliders for 
further exploration.  
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10. Multi-way Methods 
Multi-way data 

In some situations, data have a more complex structure than usual. Most multivariate 
methods are suited for handling matrices, which can be considered to be tables of data. 
But imagine that you have, for example, a situation where for each sample the 
measurements are held in a matrix. When more than one sample is measured, the 
structure of the data is more appropriately held in a ‘box’ of data. Such data are called 
multi-way data. If each sample yields a matrix of size J×K and there are I samples, then 
an I×J×K three-way array is obtained. In PLS_Toolbox there are a number of tools 
available for analyzing such data.  

Generalized Rank Annihilation Method 

One of the earliest applications of multi-way methods in chemistry addressed the 
situation where there are two samples only. It has been shown that the Generalized Rank 
Annihilation Method (GRAM) can be used to determine the magnitude of a single input 
(e.g., concentration of an analyte of interest) in a multiple input response Nm given the 
response Nc of a calibration sample of known input magnitude (Sanchez, 1988) where 

 Nc = XCcYT + E (10-1) 

where X and Y are the profiles in each of the two orders and Cc is a diagonal matrix of 
concentrations. This leads to the generalized eigenvalue/eigenvector problem 

 NcZCm = NmZCc (10-2) 

where Z is a matrix of eigenvectors. Several algorithms have been proposed for 
performing the GRAM procedure. The state-of-the-art appears to be the method proposed 
by Wilson (1989), which projects the generally rectangular response matrices Nc and Nm 
into square matrices A and B and then solves 

 AZ = BZΛ (10-3)  

using the QZ algorithm developed by Moler and Stewart (1973) and later refined by 
Ward (1975). In Equation 10-3, Λ is a diagonal matrix consisting of ratios of 
concentrations of analytes in the test and calibration samples. 

GRAM is a relatively straightforward method and has utility in a large number of 
applications; many second-order analytical methods, such as GC-MS, are bilinear, i.e., 
the data can be modeled as the outer product of concentration profiles and pure 
component spectra. The major problem with GRAM is that, in many systems, the 
concentration profiles change due to drift in the analytical system(for example, changes 
in the GC column in a GC-MS). These shifts can degrade the solutions from GRAM 
rapidly. Early implementations of GRAM led to non-meaningful imaginary solutions. 
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Modifications to the original GRAM algorithm (Shousong et al., 1993), however, have 
rectified this problem and have led to significantly improved factor estimates. 

An Example with GRAM 

Willem Windig identified a technique for which GRAM works beautifully: time-decay 
Nuclear Magnetic Resonance. In time-decay NMR, a system is given a magnetic pulse 
and then the NMR spectra are observed as they decay. Different species decay 
exponentially with different half-lives. Windig recognized that, because the decay curves 
are exponential, the profile for a single component is the same within a single scale 
factor, regardless of the time slice one looks at. Different analytes, however, have 
different profiles, because of their different half lives. Thus, one can use GRAM to 
decompose a single matrix by inputting slightly different slices of the original matrix.  

We will demonstrate GRAM using nmr_data.mat file in the PLS_Toolbox. The data 
consist of a 20 by 1176 matrix of time-decay NMR spectra of photographic film. The raw 
data are plotted in Figure 10-1. GRAM can be used to extract the pure component spectra 
and time decay profiles using the gram function as follows: 

» a = nmrdata.data(1:19,:); 
» b = nmrdata.data(2:20,:); 
» nmrscl = nmrdata.axisscale{2}; 
» [ord1,ord2,ssq,aeigs,beigs] = gram(a,b,3,1:19,nmrscl); 
 

Figure 10-1. Time-decay NMR data of photographic film from nmr_data.mat. 
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In this sequence of commands, the first nineteen samples of the data are assigned to 
matrix a, while the second nineteen are assigned to b. The gram function is used to 
estimate three factors. Scales for plotting against are also defined. The results from 
GRAM are shown in Table 10-1 which gives the eigenvalues for each matrix and their 
ratios. The percent values listed give the relative sizes of the eigenvalues for comparison 
purposes. The profiles in each of the orders are shown in Figure 10-2. 

Table 10-1. Results from GRAM: eigenvalues of A and B matrices. 

Comp     ____Matrix__A____       ____Matrix__B____      Ratio 
Number    Eigenval      %         Eigenval      %         A/B 
1     4.68e+02     8.05       4.40e+00     0.08     106.43 
2     5.23e+03    89.89       5.12e+03    98.24       1.02 
3     1.20e+02     2.06       8.75e+01     1.68       1.37 

The analyte that decays very rapidly and has the peak at ~4.5 ppm is water. The other two 
analytes are the gel and the backing of the photographic film. One of these decays much 
more rapidly than the other. Note that the spectra of the two are quite highly overlapped. 
Thus, the ability to solve for them directly with GRAM is potentially very useful. 

Figure 10-2. GRAM results showing “concentration” and spectral profiles. 
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PARAFAC 

While GRAM solves the problem 

 Nk = XCkYT + Ek, k=1,..,K (10-4) 

for two samples (K = 2), it was later realized that a multi-way model for general K exists. 
This is PARallel FACtor analysis, PARAFAC, which was developed in 1970 by R. 
Harshman and independently the same year by Carroll and Chang. The notation usually 
adopted in three-way modeling (Kiers, 2000) states Equation 10-4 as 

 Xk = ADkBT + Ek, k=1,..,K (10-5) 

where Xk is an I×J matrix and A (I×R), B (J×R), C (K×R). The matrix D is an R×R 
diagonal matrix that holds the kth row of C in its diagonal. For all Ks considered 
simultaneously, the data are held in a three-way array X of size I×J×K (see Figure 5-24) 
and the submatrices Xk are also referred to as frontal slabs.  

Written in scalar notation, the model is 

 xijk = AirB jrCkr + eijk
r=1

R

∑  (10-6) 

While Equation 10-5 appears to indicate that the model is not symmetric in the way the 
different modes (row, columns and so-called tubes) are handled, Equation 10-6 shows 
that the model is very similar to PCA and indeed does treat the different modes in the 
same manner. It is merely the matrix notation of the three-way array in Equation 10-5 
that obscures the symmetry. Comparing the scalar representation with PCA, it is seen that 
for data where K = 1, i.e., where there is only one slab, the model degenerates to a 
bilinear model. 

To obtain some intuition on what this PARAFAC model represents, several different 
interpretations are offered in the following examples. 

Imagine a matrix X1 obtained from a single run of a chromatographic system with 
spectral detection. The analytes are all present at unit concentration. Assuming linearity 
and additivity, this matrix can be decomposed into  

 X1 = ABT + E1 (10-7) 

where A is holding the pure analyte elution profiles in each column and B the 
corresponding spectra. Imagine further that a new sample X2 is taken. It contains the 
same analytes, but in different concentrations. The above model is not able to model the 
data, but by slightly modifying it by scaling each component with the concentration of 
the analyte, we get 

 X2 = AD2BT + E2 (10-8) 
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where the matrix D2 holds the concentrations on the diagonal. Thus, this new matrix is 
described by the same factors (A and B) only in different proportions. This is the idea in 
PARallel FACtor analysis – PARAFAC. The idea came from earlier investigations on 
how to rotate PCA-like components optimally (Cattell 1944), but has shown to be useful 
in a number of different settings.  

The most astonishing feature of PARAFAC, compared to PCA, is that PARAFAC is 
unique up to scaling and permutation. Scaling ambiguity means that a column of A may 
be scaled by any α, as long as the corresponding column of B or C is scaled inversely, 
i.e., by 1/α. The permutation ambiguity simply states that you may call component one 
component two and vice versa. Apart from these trivial ambiguities, the PARAFAC 
model is unique; there is only one solution to this model. Compared to the non-
uniqueness of a bilinear model (see, for example, Equation 9-2), this uniqueness is the 
direct reason for much of the popularity of PARAFAC. If the measured data follow a 
PARAFAC model, the underlying parameters of the model can be estimated without any 
rotational ambiguity. For example, for the above-mentioned chromatographic data, a 
correctly-specified PARAFAC model will directly provide estimates of the individual 
elution profiles, analyte spectra and concentrations (with the exception that the scaling is 
ambiguous). 

Example of Applying PARAFAC 

As an example of applying PARAFAC, consider excitation-emission fluorescence of a 
number of amino acids: Tryptophan (Trp), Tyrosine (Tyr), and Phenylalanine (Phe). The 
aminoacids.mat file contains data for five samples. Data from single sample, number 4, 
is shown in Figure 10-3. Unlike the first three samples in the data, which are pure 
components, this sample is a mixture of all three amino acids.  
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Figure 10-3. Sample 4 from amino acids data set.  

A PARAFAC model of the data may be easily created with the parafac function as 
follows: 

» load aminoacids 
» model = parafac(X,3); 
  
 Fitting PARAFAC ... 
 Input: 3-way 5 x 201 x 61 array 
 A 3-component model will be fitted 
 Mode 1:  Unconstrained 
 Mode 2:  Unconstrained 
 Mode 3:  Unconstrained 
 Convergence criteria: 
 Relative change in fit : 1e-06 
 Absolute change in fit : 1e-06 
 Maximum iterations     : 10000 
 Maximum time           :   1h; 0s. 
 Algorithm : ALS 
 No missing values 
 Using fast approximation for initialization (ATLD) 
  
    Iteration    Rel. Change       Abs. Change         sum-sq residuals  
        37   0.0000009174        1.3257991418        1445117.4161680976  
  
 Iterations terminated based on relative change in fit error 
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Note that the number of iterations required and the exact residuals may be different when 
executed at different times. PARAFAC is set to use random starting points in the solution 
for the model. The parafac function produces the GUI shown in the screen shot in 
Figure 10-4, providing an easy way to view the parameters in the PARAFAC model and 
a number of useful diagnostics.  

 

Figure 10-4. PARAFAC output. 

Exploring the PARAFAC Model 

A PARAFAC model may be explored using the interface shown in Figure 10-4, which is 
produced by the parafac function. The interface changes the display and produces 
additional information in the following ways: 
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• Click on the title of each plot to see a description of the plot. 
• Click on the white background of the plot to change the mode plotted. 
• Click on red text to change the sample or factor plotted. 
• Right-click (control-click in OS-X) to spawn the figure. 

As an example, the loading in each of the modes can be viewed in the upper left window. 
It is common to refer to contributions in all factors as loadings; the term scores is not 
typically used for PARAFAC. The initial view shows the loadings in the first mode. This 
view can be changed by clicking any of the axes or the white background of the figure. 
The figure changes to the loadings in the second mode, then in the third mode, then 
returns to the first mode. Scatter plots of the loadings for each factor within a mode are 
produced in the plot immediately below the loadings plots. For instance, the loadings of 
the first two factors in the first mode may be plotted against each other. The mode may be 
changed by clicking the axes, while the factors may be changed by clicking the red text.  

Different views of the residuals are given in the second column of figures. Residuals are 
shown as a function of the index in each mode in the first plot. Again, the mode viewed 
can be changed by clicking the axes. The second residuals plot shows a histogram of all 
of the residuals, and their normality is evaluated in the third plot. The residuals of 
individual samples may be reviewed in the fourth residuals plot.  

The individual samples may be viewed in the third column. The fourth column contains a 
diagnostic which is useful for evaluating the validity of the model: the core consistency 
check. This involves calculating a Tucker core using the loadings from the PARAFAC 
model. This Tucker core relates all possible combinations of the factors in each of the 
modes to each other (e.g., second factor, first mode; third factor, second mode; first 
factor, third mode). If the model is valid, the Tucker model will produce values close to 
one for each of the PARAFAC factors (same factor in each mode), but values close to 
zero for cross factors (different factors in each mode).  

Using the PARAFAC interface to review the amino acids model, we see that the model 
appears to be quite good. The loadings window shows that all the loadings are positive, 
as expected for this type of data, and the core consistency is quite good.  

PLS_Toolbox contains additional tools for multi-way decompositions that are useful 
when the data are not as ideally trilinear as the amino acids example. For instance, 
PARAFAC2 may be used when one of the sample axes stretches, or when samples have 
different numbers of time steps. Tucker models are useful when single factors in some 
modes are related to two or more factors in other modes. These models are described in 
the sections that follow. 

The Tucker3 Model 

The Tucker3 model, or three-way PCA model, is one of the most basic three-way models 
used in chemometrics. It originates from psychometrics from the pioneering work of 
Ledyard Tucker (1964). The algorithmic solution for estimating the model was later 
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substantially improved by Kroonenberg and de Leeuw (1980) and later by ten Berge et 
al. (1987). 

To explain the Tucker3 model, it is most convenient to start with a PCA model and then 
see how that can be extended appropriately. Given an I×J matrix Xk, an R-component 
PCA model of the matrix can be written 

 Xk = ABT + E (10-9) 

The matrix A will hold the scores (loadings in the first mode) and B the loadings 
(loadings in the second mode). If both the scores and loadings are normalized to a sum-
of-squares of one, then the variance can be kept separately by introducing a diagonal 
matrix G. Thus, instead of the above, we now write the model as 

 Xk = AGBT + E (10-10) 

where it is noted that the actual content of A has changed because the norm of each 
column is now held in the diagonal of G. This representation of a PCA model is similar 
to the truncated singular value decomposition described in Chapter 7, Introduction To 
Linear Algebra ; the matrix G corresponding to the singular value matrix is called the 
core. In order to prepare the two-way representation for the extension to higher orders, 
two further modifications are needed.  

The first modification is to allow for off-diagonal values in G. It is worth considering in 
detail the implications of such a modification. Usually, the components of a PCA model 
are taken in pairs: score one and loading one, score two and loading two, etc. However, 
allowing for off-diagonals in G means that the model of the data is not only given by 
such pairs. Also the ‘interactions’ of vectors have to be taken into account. For example, 
a two-component PCA model with diagonal G would read 

 Xk = g11a1b1
T + g22a2b2

T + E (10-11) 

whereas with interactions, the corresponding model reads 

 Xk = g11a1b1
T + g22a2b2

T + g12a1b2
T + g21a2b1

T + E (10-12) 

The first score vector interacts with the second loading vector (and vice versa) and the 
contribution of the interaction is given by the element g12. This added flexibility does not 
actually provide better fit for a two-way model, but it does so when going to three- or 
higher-way models. 

The second important modification of the PCA model is to allow for a different number 
of components in the two modes. Imagine that a spectral data set consists of different 
amounts of five different analytes, each with different spectra. However, two of the 
analytes covary, so that the rank of the matrix is only four. Ideally, it would be possible to 
model the data using four score (concentration) vectors and five loading (pure spectra) 
vectors, and then handle the fact that two of the analytes have the same concentrations by 
adjusting the core G accordingly. The core would then have to be of size 4×5 to allow for 
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the different number of components and if the first two loading columns would 
correspond to the first score column, then G could be written: 

 G =

1 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 

 

 
 
 
 

 

 

 
 
 
 

 (10-13) 

Using four score vectors in A and five loadings vectors held in B, the model of X would 
then read: 

 Xk = g11a1b1
T + g12a1b2

T + g23a2b3
T + g34a3b4

T + g45a4b5
T + E (10-14) 

As can be seen, the use of a non-quadratic core makes it possible to handle different 
numbers of components in the different modes. As for the non-diagonal core, the 
introduction of a different number of components does not usually provide a better fit in 
two-way analysis, but makes a difference in three- or higher-way models. 

The Tucker3 model is a simple extension of the above-mentioned two-way model to the 
three-way case. A Tucker3 model of an I × J × K array X is given by three component 
matrices A, B and C and a three-way core array G. Whereas a PCA model is defined by a 
single number of components, three such numbers have to be defined in a Tucker3 
model. The numbers are called RA, RB, and RC, respectively, and they define the number 
of columns in A, B and C, respectively. The core array G is of size RA×RB×RC and, just 
as in the two-way model, each entry defines the magnitude of the corresponding set of 
column vectors in A, B and C. Using scalar notation, the model can be written 

 xijk = grA rB rC
airA

b jrB
ckrC

+ eijk
rC

RC

∑
rB

RB

∑
rA

RA

∑  (10-15) 

This is very similar to Equation 10-6, above. The most often used way of stating the 
Tucker3 model is by using matrix notation and unfolding the data:  

 X(I×JK) = AG(RA×RBRC)(C⊗B)T (10-16) 

where X(I×JK) is the three-way array unfolded (matricized) into an I×JK matrix, and where 
the core array is rearranged similarly. 

The number three in the name Tucker3 is describing that all three modes are reduced. It is 
possible to fit a model where only two modes are reduced which would then correspond 
to a Tucker2 model. If only one mode is reduced (Tucker1), the model corresponds to a 
normal PCA model of the data rearranged into a matrix, i.e., what is typically referred to 
(somewhat erroneously) as a multi-way PCA (MPCA) model. If the Tucker model is 
applied to a four-way data set and all modes are reduced, then the appropriate name for 
that model would be a Tucker4 model. 
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Example of Tucker3 

Nørgaard and Ridder (1994) have investigated a problem of measuring samples with 
three different analytes on a flow injection analysis (FIA) system where a pH-gradient is 
imposed. A carrier stream containing a Britton-Robinson buffer of pH 4.5 was 
continuously injected into the system with a flow of 0.375 mL/min. The 77 µL of sample 
and 770 µL of reagent (Britton-Robinson buffer pH 11.4) were injected simultaneously 
into the system by a six-port valve, and the absorbance was detected by a diode-array 
detector (HP 8452A) from 250 to 450 nm in two-nanometer intervals. The absorption 
spectrum was determined every second, 89 times during one injection. By the use of both 
a carrier and a reagent, a pH gradient is induced over the sample plug from pH 4.5 to 
11.4. The three analytes present in the samples are 2-, 3-, and 4-hydroxy-benzaldehyde 
(HBA). All three analytes have different absorption spectra depending on whether they 
are in their acidic or basic form. Twelve samples of different constitution are measured as 
shown in Table 10-2. Thus the data set is a 12 (samples) × 100 (wavelengths) × 89 
(times) array. The time mode of dimension 89 is also a pH profile due to the pH-gradient.  

For each sample, a landscape is obtained showing the spectra for all times, or, conversely, 
the time profiles for all wavelengths. An example landscape is shown in Figure 10-5. It is 
characteristic of FIA that there is no physical separation of the samples. All analytes have 
the same dilution profile due to dispersion, i.e., all analytes will have total time profiles 
that are the same shape.  
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Table 10-2. Concentrations of 2HBA, 3HBA, and 4HBA in the twelve samples. 

Sample 2HBA 3HBA 4HBA 
1 0.05 0.05 0.06 
2 0.05 0.10 0.04 
3 0.05 0.10 0.06 
4 0.10 0.05 0.04 
5 0.10 0.10 0.04 
6 0.10 0.10 0.06 
7 0.00 0.10 0.04 
8 0.00 0.10 0.06 
9 0.05 0.00 0.06 
10 0.10 0.00 0.06 
11 0.05 0.10 0.00 
12 0.10 0.05 0.00 

 

Figure 10-5. FIA landscape from HBA data. 

The time-profile thus maintains its shape at all wavelengths for all samples and for all 
analytes. The total profile is the profile actually detected by the photometer and is the 
sum of the profiles of protonated and deprotonated analytes. Due to the pH gradient, and 
depending on the pKa of a given analyte, the analyte will show up with different amounts 
of its acidic and basic form at different times, and hence will have different acidic and 
basic profiles in the sample plug. In the figure above these profiles are shown for one 
analyte. The first part of the sample plug, i.e., the earliest measurements of a sample, is 
dominated by deprotonated analytes, while the end of the sample plug is dominated by 
protonated analytes.  
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Due to these special conditions, it is expected that the rank of the data will be different in 
the different modes. For example, three concentration (sample) variations are expected 
due to the three different analytes. As each analyte has both an acidic and a basic 
spectrum, we can expect six different spectral variations. Likewise, there are six profiles 
in the temporal mode, but, as the time-profiles have closure, these six underlying profiles 
will only span a four-dimensional subspace. More details on these matters can be found 
in Bro (1998). 

To investigate the variations in the data empirically, an 8×8×8 Tucker3 model was fit. 
 
» load fia; 
» model=tucker(FIA,[8 8 8]); 

Before looking into the model in detail, the core array was investigated. First the core 
was rotated to maximum variance in order to concentrate the variance on as few elements 
of the core as possible.  

» rotatedcore = coreanal(model,'maxvar'); 

And the most significant entries of this core are listed as 

» coreanal(rotatedcore.core,'list',30); 

 
          ANALYSIS OF  8 x 8 x 8 CORE ARRAY  
          (Comp /Value /Squared /FractionVar /SummedFraction)  
 
[ 1, 1, 1]         -18.91         357.47           84.65%           84.65% 
[ 1, 2, 2]          -5.88          34.59            8.19%           92.84% 
[ 2, 3, 1]           3.78          14.31            3.39%           96.23% 
[ 2, 4, 2]          -2.65           7.02            1.66%           97.89% 
[ 2, 2, 1]          -1.56           2.44            0.58%           98.47% 
[ 3, 2, 1]           1.23           1.50            0.36%           98.82% 
[ 2, 2, 2]          -1.12           1.26            0.30%           99.12% 
[ 2, 1, 2]          -0.91           0.83            0.20%           99.32% 
[ 1, 4, 3]          -0.80           0.64            0.15%           99.47% 
[ 3, 5, 1]          -0.72           0.52            0.12%           99.59% 
[ 3, 4, 1]          -0.51           0.26            0.06%           99.65% 
[ 3, 2, 2]           0.46           0.21            0.05%           99.70% 
[ 2, 3, 2]           0.42           0.18            0.04%           99.74% 
[ 3, 5, 2]          -0.42           0.18            0.04%           99.79% 
[ 1, 3, 2]           0.34           0.12            0.03%           99.81% 
[ 3, 6, 2]           0.34           0.12            0.03%           99.84% 
[ 2, 2, 3]          -0.33           0.11            0.03%           99.87% 
[ 3, 4, 2]          -0.28           0.08            0.02%           99.88% 
[ 4, 1, 3]          -0.27           0.07            0.02%           99.90% 
[ 1, 3, 3]           0.22           0.05            0.01%           99.91% 
[ 1, 7, 3]          -0.18           0.03            0.01%           99.92% 
[ 4, 1, 4]          -0.18           0.03            0.01%           99.93% 
[ 3, 1, 2]          -0.16           0.02            0.01%           99.93% 
[ 5, 1, 2]          -0.15           0.02            0.01%           99.94% 
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[ 2, 4, 1]          -0.14           0.02            0.00%           99.94% 
[ 1, 6, 3]          -0.14           0.02            0.00%           99.95% 
[ 1, 3, 4]          -0.13           0.02            0.00%           99.95% 
[ 3, 3, 2]           0.13           0.02            0.00%           99.96% 
[ 4, 2, 4]           0.11           0.01            0.00%           99.96% 
[ 4, 2, 3]           0.11           0.01            0.00%           99.96%  

The elements in the core are shown according to the amount of variation the 
corresponding component combinations explain. Looking at the first 16 most important 
components (highlighted in gray), it is observed that in the first sample mode, only three 
of the eight components appear. In the third temporal mode, only three components 
occur, but in the second spectral mode, six different components occur. The lack of four 
significant components in the temporal mode can well be explained by the fact that all 
underlying time-profiles are very similar, and hence difficult to distinguish. Apart from 
this, the model does seem to confirm the a priori assumptions.  

Based on these results, a 3×6×3 component Tucker3 model is fitted to the data. The 
scores are shown in Figure 10-6 after rotating them towards the reference concentrations. 
As can be seen, the scores are found to be very similar to the reference concentrations. 

Figure 10-6. Scores (blue triangles) after rotating the 12×3 score matrix towards the 
matrix of reference concentrations (red circles). 



295 

PARAFAC2 

A more exotic, yet very useful, model is the so-called PARAFAC2 model, developed in 
1972 by R. A. Harshman (1972). A feasible algorithm was not developed before 1999 
(Kiers, ten Berge and Bro, 1999). In some cases a data set—ideally trilinear—does not 
conform to the PARAFAC model. The reason can be sampling problems or physical 
artifacts. Another problem occurs when the slabs of the array are not of the same row (or 
column) dimension. An example could be that in a longitudinal analysis, certain subjects 
did not go along all the way (some persons dropped from the experiment before the 
analysis ended, some batches were stopped due to breakdown, etc.). It turns out that both 
the problem of axis shifts and varying axis dimensions can, in certain cases, be 
appropriately handled with the use of the PARAFAC2 model.  

Consider a chromatographic data set obtained with spectral detection of some sort, very 
generally structured as elution time × wavelength × run/sample. In many situations such a 
data set will be well suited for a PARAFAC model. Fitting a PARAFAC model will give 
the parameters A (ar being the elution profile or chromatogram of analyte r), B (bf being 
the estimated spectrum of analyte the profile or chromatogram of analyte r), and C (ckr 
being the relative concentration of analyte r in sample k). If there are shifts in retention 
time from run to run, the PARAFAC model can give misleading results, because the 
PARAFAC model assumes that the profile of each analyte (ar) is the same in every run. 
Instead of forcing the data into the PARAFAC model, it is possible to define a model that 
does not require the chromatographic profiles to be identical from run to run, but allows 
for some sort of deviation. The PARAFAC2 model is one way of doing so. 

The PARAFAC model can be written 

 Xk = ADkBT, k = 1, ..., K  (10-17) 

disregarding noise. For the above chromatographic data, Xk would be the measurements 
from one chromatographic run. Instead of modeling the Xk matrices directly, consider a 
model of an array consisting of the matrices Xk

TXk. Assuming first that the PARAFAC 
model is valid, then for the cross-product array it holds that: 

 XkXk
T = (ADkBT)T( ADkBT) = BDkATADkBT = BDkGDkBT,  (10-18) 

 k = 1, ..., K, and where G = ATA. 

If the model BDkGDkBT is fit to the three-way array of cross-product matrices (Xk
TXk), 

then it is seen that 1) the individual Xk can have a different number of columns and 2) the 
matrix A need not be the same in every slab Xk as long as ATA is the same (A is not 
estimated directly, only G).  

In the chromatographic example, the implication is that B (spectrum estimates) and C 
(concentration estimates) should be the same irrespective of elution time, but the 
chromatographic profiles need not be the same in every experiment. Only the covariance 
or crossproduct matrix of the profile loading matrix should be the same, in order to 
conform to the PARAFAC2 model. This is less restrictive than requiring that the profiles 
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be identical as in the PARAFAC model, but it is difficult to see directly what types of 
deviations from the trilinear model are then allowed. Kiers et al. (1999) have shown that 
requiring G = ATA is equivalent to assuming the model:  

 Xk = PkHDkBT + Ek, k = 1, ..., K (10-19) 

where H is an R×R matrix, Dk and B are defined as before, and the matrix Pk (I×R) is a 
columnwise orthonormal matrix. Thus, for every slab, Xk, an individual set of loadings 
Ak = PkH is estimated. Because these loadings are required to have the structure PkH it 
follows that for any k:  

 Ak
TAk = (PkH)T(PkH) = HTPk

TPkH = HTH = G (10-20) 

because Pk
TPk = I. Thus, even though Ak differ from sample to sample, Ak

TAk is constant 
as long as each Ak can be modeled as PkH. 

The above model is called the (directly-fitted) PARAFAC2 model. For chromatographic 
data, the problem of shifts in retention time can be modeled by the PARAFAC2 model, if 
the data are measured such that a baseline is present both before and after the appearance 
of the peaks. Also, overlapping peaks must, at least approximately, be shifted similarly. 
However, even though the PARAFAC2 model cannot model the kind of deviation 
present in the data perfectly, using PARAFAC2 instead of merely PARAFAC can still be 
helpful. Typically, if the data are too complex for the PARAFAC model, using the less-
restrictive PARAFAC2 will at least partly remedy the problem, yet still enable a unique 
approximate model of the data. And, in any case, the result from PARAFAC2 can give an 
indication as to whether PARAFAC is applicable, because, for trilinear data, the 
PARAFAC2 model should provide approximately the same results as PARAFAC. So if 
the results differ markedly, this is a clear indication that the added flexibility of 
PARAFAC2 is needed to handle the variation in the data appropriately. 

An important aspect of the PARAFAC2 model is that, like PARAFAC, it is unique in 
certain cases. The conditions for uniqueness of the PARAFAC2 model have been much 
less studied than the uniqueness of the PARAFAC model. Harshman and Lundy (1996) 
and ten Berge and Kiers (1996) give certain results on when uniqueness can be expected. 

  

Multilinear Partial Least Squares, N-PLS 

To generalize the PLS approach to multi-way data, a general multilinear PLS (N-PLS) 
regression model has been developed (Bro 1996, Smilde 1997, de Jong 1998, Bro et al. 
2001). 

In the three-way version of PLS, the three-way array of independent variables is 
decomposed into a trilinear model similar to the PARAFAC model; however, for N-PLS, 
the model is not fitted in a least squares sense but seeks, in accordance with the 
philosophy of PLS, to describe the covariance of the dependent and the independent 
variables. This is achieved by simultaneously fitting a multilinear model of the dependent 
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variables, a (bi-) linear model of the independent variables, and a regression model 
relating the two decomposition models. 

Unlike two-way PLS, there are only loading weights in NPLS. In two-way PLS, 
additional loadings are introduced to maintain orthogonal scores. However, a similar trick 
is not possible in multi-way modeling; therefore, the additional loadings are not 
introduced. This also means that, as opposed to the most common two-way PLS 
algorithms, NPLS models do not have orthogonal scores. 

Another difference from two-way PLS is that the model of the X data is more 
complicated to calculate because a Tucker3-like core has to be included. This core is 
calculated after the scores, weights and regression coefficients are all determined and is 
only introduced to provide appropriate X-residuals for outlier detection and other 
purposes. Thus, the interpretation of the NPLS model of X is usually performed as for a 
PARAFAC model. 
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11. Variable Selection 
Genetic Algorithms for Variable Selection 

Genetic algorithm variable selection is a technique that helps identify a subset of the 
measured variables that are, for a given problem, the most useful for a precise and 
accurate regression model. The earlier discussion of multivariate regression describes 
how multiple variables can be used together to better predict a separate quantity and how 
the expected relationship between the measured variables can be used to identify outliers 
and other faults (through Q residuals and Hotelling's T2). Many regression problems 
benefit from the multivariate advantages of more precise predictions and outlier 
detection. In some cases, however, some variables may be expensive or difficult to 
measure (expensive variables) and others may contain noise or interfering signal which 
may actually deteriorate the accuracy and/or precision of a regression model (noisy 
variables). In these cases, it can be advantageous to discard some variables. 

Noisy variables can sometimes be identified with knowledge of the measurement 
technique being used. If a given sensor is known to be highly susceptible to noise and/or 
responds very little to the changes of interest in a system, it can often be discarded. 
Similarly, spectral data often include regions in which the instrumentation has very poor 
sensitivity and the species of interest have little to no response. These regions can often 
be discarded, thus improving a model. Sometimes, however, the choice of what variables 
to discard is not as clear.  

Expensive variables pose a similar dilemma. Although many variables may be of use in a 
prediction, time, money, or other engineering considerations may preclude measuring all 
the variables originally considered for a regression model. In these cases, it is useful to 
identify a subset of the variables that allows sufficient prediction accuracy and precision 
while minimizing the number of variables to be measured. 

Although there are a variety of variable selection methods, genetic algorithms (GA) 
provide a straightforward method based on a "survival of the fittest" approach to 
modeling data.  

Genetic Algorithm Theory 

Given an X-block of predictor data and a Y-block of values to be predicted, one can 
choose a random subset of variables from X and, through the use of cross-validation and 
any of the regression methods described earlier, determine the root-mean-square error of 
cross validation (RMSECV) obtained when using only that subset of variables in a 
regression model. Genetic algorithms use this approach iteratively to locate the variable 
subset (or subsets) which gives the lowest RMSECV.  
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Figure 11-1. Map of selected variables for 10 of 64 individuals (white square indicates a 
selected variable) 

The first step of the GA is to generate a large number (e.g., 32, 64, 128) of random 
selections of the variables and calculate the RMSECV for each of the given subsets. 
When using factor-based regression methods (e.g., PLS) the maximum number of 
allowed factors in a model is limited, and the RMSECV used is the lowest obtained using 
up to that limit.  

Each subset of variables is called an individual and the yes/no flags indicating which 
variables are used by that individual is the gene for that individual. The pool of all tested 
individuals is the population. The RMSECV values, described as the fitness of the 
individual, indicate how predictive each individual's selection of variables is for the Y-
block. Because of varying levels of noise and interference in the variables, the fitness of 
the different individuals in the population will extend over some range of values. Figure 
11-1 shows ten out of a total of 64 variable subsets and resultant RMSECV values for the 
slurry-fed ceramic melter data (see Chapter 5 for a description of these data). 

The RMSECV results for all of the individuals can also be examined as a function of the 
number of included variables. Figure 11-2 shows the results obtained from an example 
population for the SFCM data. Also shown is the median of all individual RMSECV fits 
(dotted line) and the RMSECV obtained using all the variables (dashed line). Note that at 
this point, many of the individuals performed worse than when all the variables were 
used. 

The second step in the GA is selection. The individuals with fitness greater than the 
median fitness (i.e., all models above the dotted line in Figure 11-2) are discarded. The 
remaining individuals used variables which, for one reason or another, provided a lower 
RMSECV – a better fit to the data. At this point, the population has been shrunk to half 
its original size. To replace the discarded individuals, the GA "breeds" the retained 
individuals.  
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Figure 11-2. Fitness (RMSECV) versus the number of variables used by each individual. 

In PLS_Toolbox, breeding is done by one of two methods: single or double cross-over. In 
single cross-over, the genes from two random individuals are split at some random point 
in the gene. The first part of the gene from individual A is swapped with the first part of 
the gene from individual B, and the two hybrid genes form two new individuals (C and 
D) for the population. This is shown schematically in Figure 11-3. Double cross-over 
breeding (also shown in the figure) is very similar to single cross-over except that two 
random points in the gene are selected and the middle portions of the two genes are 
swapped. The biggest practical difference is that double cross-over usually produces new 
individuals with less change from the original parent genes. Put in terms of selected 
variables, double cross-over typically creates new variable subsets which more-closely 
match the variables included in one parent or the other. 

After adding the new individuals to the population, all the individuals' genes are given a 
chance for random mutation. This allows for a finite chance of adding or removing the 
use of variables that might be over- or under-represented in the population (See variable 
13 in Figure 11-1 for an example of an underrepresented variable). 
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Figure 11-3. Schematic of single and double cross-over breeding. 

Finally, after all the individuals have been paired and bred, the population returns to the 
original size and the process can continue again at the fitness evaluation step. The entire 
process is: 
 
1. Generate random variable subsets 
2. Evaluate each individual subset of selected variables for fitness to predict Y 
3. Discard worse half of individuals 
4. Breed remaining individuals 
5. Allow for mutation 
6. Repeat steps 2-5 until ending criteria are met 

The GA will finish (a) after a finite number of iterations or (b) after some percentage of 
the individuals in the population are using identical variable subsets. Individuals using 
noisy variables will tend to be discarded; thus, the variables used by those individuals 
will become less represented in the overall gene population. Likewise, less noisy 
variables will become more and more represented. Depending on the number of variables 
and the rate of mutation, many of the individuals will eventually contain the same genes.  

Practical GA Considerations 

One of the biggest risks in GA variable selection is over-fitting. It is possible that the 
variables selected may be particularly good for generating a model for the given data, but 
may not be useful for future data. This is particularly problematic when analyzing data 
with smaller numbers of samples. Although the GA uses a modified version of cross-
validation to help avoid this (see below), it is generally recommended that these 
guidelines be followed: 

single cross-over

Individual A 
Individual B 

New Individual C 
New Individual D 

double cross-over

Individual A 
Individual B 

New Individual C 
New Individual D 
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1. Keep the ending criteria sensitive. The more iterations which occur, the more 

feedback the GA will have from the cross-validation information, and thus the more 
likely the over-fitting, 

2. Use random cross-validation and multiple iterations if practical, 
3. Repeat the GA run multiple times and watch for general trends, and 
4. When analyzing data with many variables and fewer samples (short-fat problems), set 

the window width (see below) to a larger value to use blocks of variables and keep 
the maximum number of latent variables low. 

In PLS_Toolbox, genetic algorithm variable selection is performed using one of two 
functions, the Genetic Algorithm GUI (genalg), or the command-line version 
(gaselectr). If the GUI is used, data must first be loaded using the File/Load Data 
menu. If any preprocessing should be used, this can be set using the Preprocess menu.  

In either the GUI or the command-line routine is used, various GA settings need to be 
specified. In the GUI, these settings are selected using graphical controls (see Figure 11-
4); in the command-line interface, the settings are selected via an options structure. The 
following describes the settings and gives the name of the appropriate options field in 
parenthesis. 

 
• Size of Population (popsize) – The larger the population size, the more time 

required for each iteration. Larger populations do, however, provide a better 
representation of different variable combinations. One alternative to using a large 
population size is to use multiple replicate runs (reps); this, however, does not allow 
for interbreeding between potentially useful gene mixtures. 

• Window Width (windowwidth) – When adjacent variables contain correlated 
information, or the end use of the variable selection is to include or exclude adjacent 
variables together as a block (e.g., lower-resolution measurement), the original 
variables can be grouped together and included or excluded in "blocks". Window 
width indicates how many adjacent variables should be grouped together at a time. 
The grouping starts with the first variable and the subsequent (windowwidth-1) 
variables. 

• % Initial Terms (initialterms) – Specifies the approximate number of variables 
(terms) included in the initial variable subsets. Starting with fewer initial terms will 
make the identification of useful variables more difficult, but will bias the end 
solution towards models with fewer variables. See also Target. 

• Target Min/Max (target) and Penalty slope (penaltyslope) – These settings are 
used together to guide the algorithm towards a solution with a given number (or 
percentage) of included variables. To use this feature, first set some level of penalty 
slope to enable the Target Min/Max edit boxes. Prior to discarding the unfit 
individuals, each individual is tested for the total number of variables used. Any 
individual using more variables than the Target Max or less than the Target Min will 
be penalized by increasing the RMSECV fitness, based on the number of variables 
above or below the limits times the penalty slope: 
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 RMSECV RMSECV(1+ )nρ′ =  (11-1) 

where ρ  is the penalty slope and n  is the number of variables the individual used 
above or below the target range. The result is that an individual with a good fit but 
using too many or too few variables will be more likely to be discarded, unless the fit 
is unusually better than that of other individuals. In the GUI, the penalty slope must 
first be selected, then the target range.  

Target range can be specified in absolute number of variables or in percentage of total 
variables, based on the % checkbox to the right of the target. In the options structure, 
the percentage is specified using the targetpct field. A value of 1 (a checked 
checkbox in the GUI) indicates that target is specified in percent. 

• Max Generations (maxgenerations) and Percent at Convergence (convergence) 
– Specify the ending criteria as described earlier. Lower settings for both will help 
avoid over-fitting of data. It is sometimes useful to perform many replicate runs with 
a lower setting for maximum generations. 

• Mutation rate (mutationrate) – The higher the mutation rate, the more chance of 
including underrepresented variables or excluding over-represented variables. 

 

 

Figure 11-4. GUI interface used to specify GA settings. 
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• Regression Choice (algorithm) and # of LVs (ncomp) – Specifies the regression 
method as MLR (use all selected variables) or PLS (use latent variables derived from 
selected variables). The number of LVs slider (or ncomp option) specifies the 
maximum number of latent variables which can be used in a PLS model. This should 
generally be kept near the number of LVs necessary to accurately model the data and 
should be no more than absolutely necessary (to avoid overfitting). 

• Cross-Validation settings (cv, split, iter) – Selects the type and number of 
splits and iterations to be used for cross-validation. Note that the contiguous block 
cross-validation used by GA is slightly modified from that used in standard cross-
validation. Although the samples are still selected and left-out in contiguous blocks, 
the starting position of the first block shifts randomly through the data. This helps 
reduce the likelihood of over-fitting. 

• Replicate Runs (reps) – This specifies the number of times the GA should be run 
using the specified conditions. The results of each cycle will be concatenated together 
and will appear together in the results plots, as described below. 

The settings can be saved from the GUI for use as an options structure in the command-
line function by selecting File/Save Settings and specifying a variable to which the 
options should be saved. 

After the settings have been specified as desired, the analysis can be started in the GUI by 
selecting Execute. From the command line, executing gaselctr will start the analysis 
with the given settings:  gaselctr(x,y,options) 

Analysis of GA Results 

During the analysis, a four-plot figure will be provided and the command window will 
display the progress of the GA run. An example is shown in Figure 11-5. The top left plot 
indicates the fitness vs. number of included variables for each member of the current 
population. The RMSECV obtained using all variables will be shown as a dashed 
horizontal line. If target and penalty slope are being used, the penalized fitness will be 
shown as red dots along with the actual fitness as the usual green circles. 

The top right plot shows the trend of the average fitness (top line) and the best fitness 
(bottom line) with generation number. The horizontal dashed line is the RMSECV 
obtained using all variables. The best fitness represents how well the best model is doing. 
As the population begins to become more similar, the best and average fitness lines 
converge. If neither line is changing much, the GA has either reached a consensus of 
selected variables or the equivalent solutions with different selected variables. 

The bottom right plot shows the change with each generation in the average number of 
variables used by each individual in the population. When min/max targets are not being 
used, this plot shows the natural trend towards some number of required variables. With 
min/max targeting, the plot indicates how well the target is being met, on average. 

The bottom left plot indicates the total number of times each variable is used in the 
population. Variables which are used more are usually more useful in the regression. 
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Variables which show up less are less useful. Note, however, that depending on the 
population size, mutation rate, and total number of generations, the frequency of 
inclusion of any given variable may be biased. It is best to compare frequency of usage 
with multiple replicates or large, young populations. 

 

Figure 11-5. Example of diagnostic plots shown during GA run. 

It is generally true that the entire set of selected variables should be considered as a whole 
as opposed to considering each variable as useful on its own. This is because a variable 
may only be helpful to prediction when used in conjunction with other variables included 
in an individual variable subset. 

Once the analysis is done, two additional plot buttons will be available on the GUI: Fit 
vs. Var (Fitness versus Number of Variables) and Frequency. These two buttons return 
results similar to the top left and bottom right plots, respectively, in Figure 11-5. 
However, they include the compiled results from all replicate runs. 

Fit vs. Var includes some additional information and can be used to look for trends in 
variable usage. Initially, you are presented with a plot of fitness of each individual versus 
the number of included variables. Use the mouse to select some range of the individuals 
(for example, if you wish to examine only models using more variables, select only these 
individuals from the plot). Next, a plot indicating variable usage, color coded by resulting 
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RMSECV, will be shown. For reference, the mean of the raw data is overlaid on the plot 
of included variables.  

Figure 11-6 shows an example of a Fit vs. Var variable usage plot for the SFCM data. 
The variable usage plot is most useful to identify trends. If inclusion of a given variable 
tends to improve the RMSECV, the inclusion marks for this variable will tend to appear 
towards the bottom of the figure. Conversely, a variable which tends to degrade the 
RMSECV will tend to appear towards the top of the figure. If a variable doesn't show up 
at all, it is likely to be not useful and if it is used in all the models, it is probably more 
useful.  

It is very important, however, to consider the range of RMSECVs observed through the 
models. In many cases, the final RMSECV values will be very similar for the individual 
models, and, as such, the differences in selected variables are not important. If, however, 
the GA run is stopped early, when a large range in RMSECV exists, more general trends 
can be observed. Figure 11-6, for example, shows the results of 135 models after only 
three generations. It can be clearly seen that variable 9 is harmful to good RMSECV 
while variable 11 is not useful but not harmful. 

 

Figure 11-6. Example of Fit vs. Var plot for SFCM data. 
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Figure 11-7. Example of Fit vs. Var plot for NIR spectra of simulated gasoline. 

A second example of fit as a function of variables-used is shown in Figure 11-7. This is 
for prediction of the first of five components used for the gasoline simulant discussed in 
Chapter 6. The X-block is the spec1 dataset in the nir_data.mat file and the Y-block is 
the first column of the conc dataset. For this run, the window width was set to 25 
variables, the maximum number of latent variables was set at five, and the analysis was 
repeated for a total of six replicate runs; otherwise, all other settings were at their default 
value.  

Note that the RMSECV covers a fairly large range from just under 0.3% (absolute error 
in concentration as weight/weight %) to just above 0.6%, so the worst of these models are 
twice as bad as the best models at predicting the concentration. Nearly all models use the 
windows of variables centered at 138, 263, 288, and 388. Very few models, and almost 
none of the best models, use variables at 38, 63, 88, 138, 188, or 338. These variable 
windows are either not useful or are actually detrimental to the prediction of the 
concentration of this component. It can be seen that the selected regions fall on or near 
the spectral peaks of the mean spectrum, overlaid for reference on the plot. 

Once a GA run is complete, the X-block data can be re-saved with only the selected 
variables (those used for the model with lowest RMSECV). The menu option File/Save 
Best/as Dataset will save the X-block data with the include field set to only the selected 
variables. To save only the selected variables as a standard array (i.e., not in DataSet 
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Object format), use File/Save Best/as Matrix. This will save only the selected variables 
of the data as a simple array object. Either of these can be read into the Analysis GUI and 
used in further modeling. 

The results and statistics of the GA run can also be saved as a structure by selecting 
File/Save Results and specifying a variable name. This structure contains various fields 
including the RMSECV for each final model in the rmsecv field, and the variables 
selected for each of those models as a binary representation (1 = selected) in the icol 
field. The first row of icol corresponds to the first entry in rmsecv. 

Interval PLS (IPLS) for Variable Selection 

Similar to the Genetic Algorithm (GA) described above, Interval PLS (IPLS) selects a 
subset of variables which will give superior prediction compared to using all the variables 
in a data set. Unlike the GA, IPLS does a sequential, exhaustive search for the best 
variable or combination of variables. Furthermore, it can be operated in "forward" mode, 
where intervals are successively included in the analysis, or in "reverse" mode, where 
intervals are successively removed from the analysis. 

The "interval" in IPLS can be either a single variable or a "window" of adjacent variables 
(as might be used with spectroscopically-correlated or time-correlated variables, where 
adjacent variables are related to each other). In this discussion, we will refer to an 
"interval" with the understanding that this may include one ore more variables. 

In forward mode, IPLS starts by creating individual PLS models, each using only one of 
the pre-defined variable intervals. This is similar to what is shown in Figure 11-1, except 
that only one of the individual intervals can be "on" at a time. If there are 100 intervals 
defined for a given data set, the first step calculates 100 models (one for each interval). 
Cross-validation is performed for each of these models and the interval which provides 
the lowest model root-mean-square error of cross-validation (RMSECV) is selected. This 
is the best single-interval model and the first selected interval, I1. 

If only one interval is desired, the algorithm can stop at this point returning the one 
selected interval. If, however, more than one interval is desired (to increase information 
available to the model and maybe, thereby, improve performance), additional cycles can 
be performed. In the second cycle, the first selected interval is used in all models but is 
combined with each of the other remaining intervals, one at a time, when creating a new 
set of new PLS models. Again using RMSECV, the best combination of two intervals (I1 
and one additional interval, I2) is determined. Note that the first selected interval can not 
change at this point. This is repeated for as many intervals as requested (up to In). 

Reverse mode of IPLS works in an opposite manner to forward mode. All intervals are 
initially included in the models, and the algorithm selects a single interval to discard. The 
interval which, when excluded, produced a model with the best RMSECV is selected for 
permanent exclusion. This is the "worst" interval, I1. If the user has selected that more 
than one interval should be excluded, subsequent cycles discard the next worst intervals 
based on improved RMSECV when each interval is discarded. 
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Practical IPLS Considerations 

The total number of intervals to include or drop (number of cycles to perform) depends 
on various factors, including but not limited to: 

• The expected complexity of the system being modeled – the more complex (e.g., 
non-linear) the data, the more intervals usually needed. 

• The amount of data reduction necessary – if only a fixed number of variables can 
be measured in the final experiment, the number of intervals should be limited. 

• The distribution of information in the variables – the more distributed the 
information, the more intervals needed for a good model. 

One method to select the best number of intervals is to cross-validate by repeating the 
variable selection using different sub-sets of the data. There is no automatic 
implementation of this approach in PLS_Toolbox. However, the IPLS algorithm does 
allow one to indicate that the algorithm should continue to add (or remove) intervals until 
the RMSECV does not improve. This can give a rough estimate of the total number of 
useful intervals. If multiple runs with different sub-sets of the data are done using this 
feature, it can give an estimate of the likely "best" number of intervals. 

Another consideration is interval "overlap". Variables in the data can be split in a number 
of ways.  

• Intervals can each contain a single variable, thereby allowing single-variable 
selection.  

• Intervals can contain a unique range or "window" of variables where each 
variable exists in only one interval. 

• Intervals can contain overlapping ranges of variables where variables may be 
included in two or more intervals and can be included by selecting any of those 
intervals. 

The decision on which approach to use depends on the uniqueness of information in the 
variables of the data and how complex their relationships are. If variables are unique in 
their information content, single-variable intervals may be the best approach. If adjacent 
variables contain correlated or complementary information, intervals which contain 
ranges of variables may provide improved signal-to-noise, increased speed of variable 
selection, and decreased chance of over-fitting (that is, selecting variables which work 
well on the calibration data but not necessarily on any data for the given system). 

In contrast, although allowing overlapping intervals may seem as though it provides the 
advantages of increased signal-to-noise and modeling complexity, it may also lead to 
over-fitting. The difference between two adjacent windows becomes only the variables 
on the edges of the windows (those which are dropped or added by selecting the 
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neighboring intervals.) In addition, overlapping windows can increase the analysis time 
considerably. 

One general caveat to IPLS variable selection should be carefully considered. It is 
possible that, given n different intervals, the best "single interval" model would be 
obtained by selecting a given interval (interval 10, for example). The best "two interval" 
model, however, might actually be obtained by selecting two different intervals (5 and 6, 
for example). Because of the step-wise approach to this IPLS algorithm, once the single-
best interval is selected, it is required to be included in all additional models. As a result, 
the two-interval model might include intervals 5 and 10 (because 10 was selected first), 
even though 5 and 6 would provide a better RMSECV. This type of situation is most 
likely to arise when data are complex and require a significant number of factors for 
modeling. In these situations, using larger interval "windows" and requiring the addition 
of additional intervals (cycles) should be used. Additionally, the GA method of variable 
selection may provide superior results. 

Using the IPLS Function 

The PLS_Toolbox ipls function takes as input the X- and Y-block data to be analyzed, 
the size of the interval windows (1 = one variable per interval), the maximum number of 
latent variables to use in any model, and an options structure. The options structure 
allows selection of additional features including: 

• mode : defines forward or reverse analysis mode. 

• numintervals : defines the total number of intervals which should be selected. A 
value of inf tells IPLS to continue selecting until the RMSECV does not 
improve. 

• stepsize : defines the number of variables between the center of each window. 
By default, this is empty, specifying that windows should abut each other but not 
overlap (i.e., stepsize is equal to the window size). 

• mustuse : indices of variables which must be used in all models, whether or not 
they are included in the "selected" intervals. 

• preprocessing : defines the preprocessing to be performed on each data subset 
(for more information, see the preprocess function). 

• cvi : cross-validation settings to use (for more information, see the cvi input to 
the crossval function). 

Demonstration of the ipls function can be done through the analysis of the slurry-fed 
ceramic melter (SFCM) thermocouple data previously discussed in Chapter 5. Briefly, 
these data consist of measurements from twenty thermocouples at various depths in a 
tank of melted ceramic material. As the level of the material rises and falls, the different 
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thermocouples experience different temperatures. One can use IPLS to consider which 
thermocouple or thermocouples are the most useful in determining the level of material. 

To do this, ipls is called with the SFCM data and inputs to set the maximum number of 
latent variables, interval width, and preprocessing options (autoscaling, in this case): 

» load pls_data 
» options = ipls('options'); 
» options.preprocessing = {'autoscale' 'autoscale'}; 
» int_width = 1;  %one variable per interval 
» maxlv = 5;      %up to 5 latent variables allowed 
» sel   = ipls(xblock1,yblock1,int_width,maxlv,options); 

The result is the plot shown in Figure 11-8.  
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Figure 11-8. First selected interval for SFCM data. 

The figure shows the RMSECV obtained for each interval (with the average sample 
superimposed as a black line). The numerical values inside the axes along the bottom 
(just above the variable number) indicate the number of latent variables (LVs) used to 
obtain the given RMSECV. Because each interval contains only a single variable, only 1 
LV can be calculated in all cases. The green interval (variable 18) is the selected interval. 
The horizontal dashed lines indicate the RMSECV obtained when using all variables and 
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1 or 5 LVs. Note that interval 18 on its own gave a slightly better one-LV model than did 
the model using all twenty variables. However, a five-LV model using all variables still 
did better than any individual interval. 

The commands below repeat this analysis but request that two intervals be selected 
instead of one. The plot shown in Figure 11-9 is the result. 

» options.numintervals = 2;   
» sel = ipls(xblock1,yblock1,int_width,maxlv,options); 

2 4 6 8 10 12 14 16 18 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

 (5 LVs)

 (1 LVs)

1 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 1 2 2  (# LVs)

Variable Number

R
M

S
E

C
V

 w
ith

 in
te

rv
al

 a
dd

ed

Forward iPLS Results

 

Figure 11-9. First two selected intervals for SFCM data. 

The figure shows the results at the end of all interval selections. The final selected nth 
interval is shown in green. Intervals selected in the first n-1 steps of the algorithm are 
shown in blue. Because this analysis included only two intervals being selected, there is 
only one interval shown in blue (the first selected interval) and the second selected 
interval is shown in green. The height shown for the selected intervals (blue and green) is 
equal to the RMSECV for the final model. In this case, the final model with two selected 
intervals used only one latent variable (as indicated at the bottom of the bars) and gave an 
RMSECV which was slightly better than the RMSECV obtained using five latent 
variables and all intervals (dashed red line). Interestingly, the variables selected (numbers 
8 and 18) are duplicate measurements at the same depth in the tank. This is a good 



314 

indication that the given depth is a good place to measure, should only a single 
thermocouple be used. 

The final example for IPLS shows the reverse analysis of the gasoline samples discussed 
in Chapter 6. In this case, the Y-block being predicted is the concentration of one of five 
components in these simulated gasoline mixtures and the X-block is the near-IR spectra 
measured for each sample. The reverse IPLS analysis indicates the effect on the 
RMSECV when each interval is discarded, and therefore the best interval(s) to discard. In 
this case, IPLS will be run with the maxintervals option set to infinity to trigger the 
"automatic" mode. The ipls function will continue to remove intervals until removing an 
interval would cause the RMSECV to increase. The MATLAB commands are shown 
below; the resulting plot is shown in Figure 11-10. 

» load nir_data 
» options = ipls('options'); 
» options.preprocessing = {'autoscale' 'autoscale'}; 
» options.numintervals = inf; 
» ipls(spec1,conc(:,1),25,5,options); 

Figure 11-10. Reverse IPLS analysis for simulated gasoline samples. 

A total of eight intervals were discarded before it was determined that removing any 
additional intervals would cause an increase in RMSECV. Intervals marked in red on the 
reverse IPLS results plot are those that were discarded in the first seven cycles. The 
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interval marked in green was the last discarded interval. The blue intervals are those that 
were retained. Each bar indicates the RMSECV which would have resulted, had the given 
interval been discarded. It can be seen that the intervals centered at 38, 113, and 263 are 
all critical for a good model (discarding these intervals would result in a significant 
increase in RMSECV.) It can also be seen that intervals at 63 and 88 were likely 
candidates for exclusion in the last cycle as the RMSECV change would have been nearly 
negligible. 

It is interesting to compare the IPLS results on the gasoline simulant shown in Figure 11-
10 to those from the GA run on the same data, shown in Figure 11-7. Note that, with a 
few exceptions, the same regions are discarded in each case. The biggest discrepancy is 
the inclusion of the interval centered at variable 113. This interval was under-represented 
in the GA models, but appears to be highly important to the model formed with IPLS-
based selection. The difference is likely due to IPLS having excluded some region in an 
earlier cycle which left the 113-centered interval as the only source of some information. 
In contrast, the GA models discovered that a different combination of intervals could 
achieve a better RMSECV by discarding interval 113 and retaining a different interval. 
Note, incidentally, that the final model created by IPLS selection returns an RMSECV of 
around 0.71. This is in contrast with the GA result of 0.27 for the same data. 

Conclusions 

In general it should be remembered that, although variable selection may improve the 
error of prediction of a model, it can also inadvertently throw away useful redundancy in 
a model. Using a fewer number of variables to make a prediction means that each 
variable has a larger influence on the final prediction. If any of those variables becomes 
corrupt, there are fewer other variables to use in its place. Likewise, it is harder to detect 
a failure. If you keep only as many measured variables as you have latent variables in a 
model, you cannot calculate Q residuals, and the ability to detect outliers is virtually 
eliminated (except by considering T2 values). As such, the needs of the final model 
should always be carefully considered when doing variable selection. 
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12. Instrument Standardization 
Once a calibration for a process analytical instrument has been developed, it would be 
convenient if it could be transferred to other similar instruments. This would eliminate 
the need to run a large number of calibration samples and to develop a completely new 
calibration model. Direct transfer of calibrations is not usually satisfactory, however, 
because instruments are never identical. It also happens that instruments tend to drift, 
which changes their characteristics after some time. Instrument standardization methods 
were developed in order to deal with these similar problems.  

This problem has been addressed in several different ways by various researchers, but the 
methods generally fall into two classes: 1) techniques that attempt to predict the response 
of the standard instrument based on the response of the subject instrument, i.e., map the 
response of one instrument into another, and 2) techniques that eliminate the differences 
between instruments, leaving only the parts they have in common. In the first case, there 
is usually a single calibration model, developed on the standard instrument, through 
which data from both instruments are processed. In the second case, a model is generally 
developed using transformed data from both instruments.  

Figure 12-1. Relationship between spectra on different instruments in PDS. 

The Piece-wise Direct Standardization (PDS) method (Wang et al., 1991, 1992, 1994) is 
of the first type, and is perhaps the most successful calibration transfer technique. It 
works by forming “local” linear models that relate the response of the instrument to be 
standardized over a range of frequencies to the response of the standard instrument at a 
single frequency. This is shown schematically in Figure 12-1. This is in contrast to Direct 

800 900 1000 1100 1200 1300 1400 1500 1600
−0.5

0

0.5

1

1.5

2

Wavelength (nm)

A
bs

or
ba

nc
e

Master Instrument

800 900 1000 1100 1200 1300 1400 1500 1600
−0.5

0

0.5

1

1.5

2

Wavelength (nm)

A
bs

or
ba

nc
e

Slave Instrument



318 

Standardization, (DS), which uses the entire spectrum. Additional techniques of the 
second type include Orthogonal Signal Correction (OSC) and Generalized Least Squares 
Weighting (GLSW).  

Usually, standardization transforms are developed using a small number of samples that 
are run on both instruments (or a single instrument at two different times). These samples 
are then used to develop either a transform that maps the response of one instrument into 
another, or a model that eliminates differences.  

Sample Subset Selection 

The first step in developing a standardization transform is to select samples that will be 
measured on both machines. These can be samples used to form a calibration model or 
other samples designed to exercise the instrument in the spectral region of interest. A 
convenient method for choosing samples is based upon their multivariate leverage, which 
is a measure of their uniqueness in the calibration set. This is a simple procedure which 
starts by selecting the sample with the greatest deviation from the multivariate mean of 
the calibration samples. All other samples are then orthogonalized with respect to the first 
sample and the procedure is repeated. Given a calibration set from Instrument 1, R1 (n 
samples by m wavelengths), that has been mean-centered, calculate the leverage matrix H 
as: 

 H = R1R1
T (12-1) 

Note that H is n by n. The diagonal elements of H are the leverages of the samples, i.e., 
hii is the leverage of the ith sample. Select the sample with the highest leverage, rmax. Set 
the elements of this spectrum equal to zero, then orthogonalize each remaining spectrum 
ri in the data set by performing 

 rio = ri - rmax ((rmax riT)/(rmax rmaxT)) (12-2) 

for each spectrum where rio is the orthogonalized ri. Note that this procedure subtracts 
from ri the portion of rmax that projects onto it. This procedure is then repeated as in 
Equation 12-2, using the orthogonalized spectra in place of R  1. It is often better to select 
samples for calibration transfer utilizing the calibration model inverse R  1+, i.e., the PLS 
or PCR approximation to the inverse (see Equations 6-7 and 6-20), in the formation of the 
H matrix: 

 H = R  1R  1+ (12-3) 

The diagonal elements of H are then the leverages of the samples with respect to their 
influence on the calibration model. The orthogonalization procedure above is then used to 
select the samples. This procedure emphasizes samples with a large influence on the 
calibration model, as opposed to the procedure above, which emphasizes samples that are 
far from the multivariate mean without regard to their direct influence on the model. As a 
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result, the procedure based on the model inverse tends to select samples that exercise the 
portions of the spectrum upon which the model most depends.  

In some applications as few as three spectra are sufficient for building a transfer function 
between instruments; however, additional samples can be beneficial. Once the transfer 
samples are identified based on the leverage of their spectra, the samples must be 
measured on both spectrometers and the calculation of the standardization can 
commence. 

The NIR spectra of the simulated gasoline samples contained in nir_data.mat can be 
used to demonstrate the development of a standardization transform. The file contains 
NIR spectra of the same thirty samples measured on two different instruments. We can 
now select five samples from the spectra based on leverage as follows: 

» load nir_data 
» [specsub,specnos] = stdsslct(spec1.data,5); 

The following samples are selected in order: 22, 15, 26, 25, and 1. These are the samples 
that are unique. Hopefully, they will also be useful for describing the difference between 
the two instruments. Alternatively, a PLS model could be developed for the first analyte 
from the NIR data, then a subset could be selected with respect to this model inverse as 
shown below. First a default preprocessing structure would be generated and inserted into 
a pls options structure. The model could be then be generated, the inverse formed, and 
the spectra selected as follows: 

» s = preprocess('default','mean center'); 
» opts = pls('options'); 
» opts.preprocessing = {s,s}; 
» mod = pls(spec1.data,conc(:,1),5,opts); 
» rinv = rinverse(mod); 
» [specsub,specnos] = stdsslct(spec1.data,5,rinv); 

This procedure selects the samples 1, 20, 7, 21 and 27. Note, however, that the model 
inverse calculated above was based on only the first analyte out of the five analytes in the 
data set.  

Development of the Standardization Transform 

It is assumed that the calibration model is formulated as  

 y = R1β + 1b1 (12-4) 

where y is the concentration vector of the analyte of interest, R1 is the response matrix, 
β is the regression vector, b1 is the constant offset of the model and 1 is an m by 1 vector 
of ones, where m is the number of samples. After mean-centering: 

 y = R1β (12-5) 
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where y and R1 are the mean-centered y and R1, respectively. The relationship between 
the instruments is then modeled as: 

 S1 = S2Fb + 1bsT (12-6) 

where S1 is the response of Instrument 1 to the p transfer samples, S2 is the response of 
Instrument 2 (or Instrument 1 at a later time), Fb is the transformation matrix, bs is the 
background correction which accommodates the additive background difference between 
the instruments, and 1 is a p by 1 vector of ones, where p is the number of transfer 
samples (rows) in S1 and S2. Note that it is assumed at this point that S1 and S2 are not 
mean-centered. 

The transfer function matrix, Fb, is then calculated to satisfy: 

 S1 = S2Fb (12-7) 

where S1  and S2  are the mean-centered S1 and S2. As noted previously, Fb can be 
calculated several ways, one of which is the PDS method as described above. In PDS, Fb 
has the diagonal structure shown in Figure 12-2, where each local model (generally 
determined from PLS or PCR) relates the response of a number of channels of Instrument 
2 to a single channel on Instrument 1. One such model is shown in bold in the figure.  

Figure 12-2. Structure of the PDS transformation matrix Fb. 

The PDS standardization matrix and additive background correction can be calculated 
with the PLS_Toolbox function ‘stdgen’. Here we will use the subset selected by 
‘stdsslect’ above to form the transform and use a window that is five channels wide: 

»[stdmp,stdvp] = stdgen(spec1.data(specnos,:),spec2.data(specnos,:),5); 

0
0F =b
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Another method, Direct Standardization (Wang et al., 1994), uses  

 Fb = S2
+S1 (12-8) 

where S2
+ is the pseudoinverse of S2. This is formed through use of the SVD as follows. 

Take 

 S2 = U S VT (12-9) 

then 

 S2
+  = U S-1 VT (12-10) 

where S-1 is S with all of the non-zero singular values replaced by their reciprocals.  

The additive background term, bs, is calculated as 

 bs = s1m - FbTs2m (12-11) 

where s1m and s2m are the are the mean vectors of S1 and S2 respectively.  

The DS standardization matrix and additive background correction are calculated with 
the same function, ‘stdgen’, by simply changing the argument of the window width to 
0: 

»[stdmd,stdvd] = stdgen(spec1.data(specnos,:),spec2.data(specnos,:),0); 

Prediction using Standardized Spectra 

After calibration and formation of the standardization transform, the concentration 
estimate for any spectrum, r2un, measured on Instrument 2 can be obtained using the 
calibration model developed on Instrument 1 as 

 y2un = (r2un Fb + bsT)β + b1 (12-12) 

where b1 is defined from Equation 12-4. In MATLAB, the spectra from Instrument 2 can 
be standardized for both of the standardization models as follows: 

» cspec2p = stdize(spec2.data,stdmp,stdvp); 
» cspec2d = stdize(spec2.data,stdmd,stdvd); 

The spectra are now ready for use with the models developed on the spectra from the first 
instrument.  

Figure 12-3 shows the improvement in the root-mean-square difference between the 
instruments before and after the standardization. As you can see, there is a considerable 
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improvement in the difference of the responses. Although there appears to be little 
difference between the direct and piece-wise direct standardized spectra, in practice the 
PDS method produces somewhat better results when the spectra are used for prediction, 
because the PDS method does not “overfit” the spectra as much as the direct method. 

A full demonstration of instrument standardization methods is contained in the demo 
stddemo. This demo uses the NIR data to develop standardization and calibration models 
and compare the methods. 
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Figure 12-3. Mean difference between NIR spectra before and after standardization. 

Non-Square Systems 

In the example above, both of the instruments considered were very similar; they both 
measured the spectra of the samples at 401 points between 800 and 1600 nanometers. 
What if the instruments had a different number of channels in that range? The function 
stdgen will generate standardization transforms for non-square systems, and was 
developed for just such a case. The form of the model is very similar to that of PDS 
except the F matrix is not square; rather, it is the number of channels on the instrument to 
be standardized by the number of channels on the standard instrument.  

Double Window PDS 

Another potential issue in standardization involves the use of high resolution spectra such 
as FTIR spectra of gas phase samples. In these cases, the spectral features are very 
narrow with regions of only baseline noise in between. Models developed with PDS in 
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such a case are fine where there are features in the transfer spectra but not very good in 
between. Double window PDS addresses this problem by forming models based on data 
on both sides of the current window to be standardized. The second window defines the 
range of data outside the original window to be used. The form of the model is identical 
to that of PDS; only the way in which the model is identified is different. For instance, let 
the transfer spectra from the standard instrument be R1, and the spectra from the 
instrument to be standardized be R2. In PDS with a window width (model length) of 
2j+1, the model for the ith channel bi is identified by 

 bi = R2(:,i-j:i+j)+R1(:,i) (12-13) 

where we have used MATLAB notation to indicate which columns of R1 and R2 are used 
in the formation of the model bi. The superscript + indicates a pseudoinverse. In double 
window PDS, with a first window width (model length) of 2j+1 and a second window 
width (identification width) of 2k+1, the model for the ith channel bi is 

 bi = R2DW+ R1DW  (12-14) 

where R2DW = 
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Using this scheme, the model for the ith channel is based on a wider range of data. In 
order for this scheme to be useful, the instrument transfer function must not be a strong 
function of wavelength. The function stdgen implements DWPDS. Our experience using 
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DWPDS in FTIR shows that it may be optimal to have a narrow first window, on the 
order of the resolution of the instrument, and very wide second window. DWPDS is 
compared with PDS in stddemo using the NIR data, where one would not expect 
DWPDS to be particularly advantageous. Still, on the data considered, it is possible to 
derive a PDS model with a window width of 3 with the same performance as a model 
identified with DWPDS with a window width of 5. This suggests that it is possible to get 
a model with additional coefficients, provided that more data are used in the construction 
of each of the models. It may be that the DWPDS-derived models are more robust in 
practice, but this remains to be investigated.  

Standardization with FIR Filters 

The stdfir function can be thought of as a moving window MSC and is analogous to 
using a finite impulse response modeling methodology. The function, based on the work 
by Blank et al. (1996), uses a windowed MSC to correct the spectra to a reference 
spectrum with only the center channel of each window being corrected. This technique 
has the advantage of using MSC, i.e., only one spectrum on the standard instrument is 
required to transfer spectra from a second instrument. Also, if the scattering effect is a 
function of wavelength, the windowing may avoid some of the limitations imposed by 
using a single multiplicative factor in MSC.  

Note that it is advisable to cross-validate over the window width to find the best window 
for standardization. Also, it has been found that if the reference spectrum has regions 
about the size of the window width which are flat, estimates of the inverse of r′Tr′ in that 
window can be poor, resulting in artifacts (e.g., spikes) in the corrected spectra. If the flat 
region is not in an area with zero absorbance, the function results might improve if mean-
centering is not used. Another way to stabilize the estimates is to add a constant slope to 
the spectra prior to using stdfir and then to take the derivative after standardization. 
Also, when using the FIR filter approach Sum and Brown (1997) have reported that 
“despite very good precision, a comparatively large bias is manifested in prediction in 
some systems.” They also report a methodology for correcting the bias. 

Orthogonal Signal Correction 

Orthogonal Signal Correction (OSC) is a data preprocessing method that can be used 
prior to PLS modeling. In situations where the a PLS model captures a very large amount 
of predictor block (X) variance in the first factor but gets very little of the predicted 
variable (y or Y), this method can be very helpful. In these cases, it is useful to remove 
extraneous variance from X that is unrelated to y. OSC does this by finding directions in 
X that describe large amounts of variance while being orthogonal to y. PLS models are 
built on OSC-corrected data, then the OSC correction is applied to new data before the 
models are applied to that data. OSC can also be used for standardization purposes to 
remove variation between instruments that is not related to the variables to be predicted. 
An example of this is shown here using the osccalc and oscapp functions with the NIR 
data from the previous example. 

» load nir_data 
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» [specsub,specnos] = stdsslct(spec1.data,5); 
» x1 = spec1.data(specnos,:); x2 = spec2.data(specnos,:); 
» y1 = conc.data(specnos,:); 
» x = [x1; x2]; y = [y1; y1]; 
» [nx,nw,np,nt] = osccalc(x,y,2); 
» newx1 = oscapp(spec1.data,nw,np); 
» newx2 = oscapp(spec2.data,nw,np); 

The difference before and after standardization over all thirty samples is shown in Figure 
12-4 below. The RMS errors (not shown) are comparable to those shown in Figure 12-3. 
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Figure 12-4. Difference between instruments before (red) and after (blue) application of 
OSC. 

Standardization via Generalized Least Squares Weighting 

Like OSC, Generalized Least Squares Weighting (GLSW) is a data preprocessing method 
that can be used prior to PLS modeling to remove extraneous variance. When used for 
standardizations, the objective is to remove variation that the instruments do not have in 
common. PLS models are built on GLSW-corrected data, then the GLSW correction is 
performed on new data before the models are applied to that data. An example of this is 
shown here using the glsw function and the NIR data from the previous example. 

» load nir_data 
» [specsub,specnos] = stdsslct(spec1.data,5); 
» x1 = spec1.data(specnos,:); x2 = spec2.data(specnos,:); 
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» modl = glsw(x1,x2); 
» newx1 = glsw(spec1.data,modl); 
» newx2 = glsw(spec2.data,modl); 

The difference before and after standardization over all thirty samples is very similar to 
the differences shown in Figure 12-4 for OSC. Likewise, the RMS errors (not shown) are 
comparable to those shown in Figure 12-3. 
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13. Robust Statistical Methods 
Preface 

PLS_Toolbox 4.0 includes robust statistical methods for Principal Components Analysis 
and Regression. The robust functionality has been incorporated by including a version of 
LIBRA, a MATLAB Library for Robust Analysis. LIBRA was developed by the research 
groups on robust statistics at Katholieke Universiteit Leuven and the University of 
Antwerp. More details concerning LIBRA can be found in Verboven and Hubert, (2005) 
and at http://wis.kuleuven.be/stat/robust/LIBRA.html. Eigenvector Research has licensed 
LIBRA, and with the help of Drs. Sabine Verboven and Mia Hubert, modified it to make 
it work with PLS_Toolbox. This chapter introducing robust statistics was developed 
primarily by Verboven and Hubert. 

Introduction 

Robust methods are developed because atypical observations in a data set heavily affect 
the classical estimates of data mean and variance/covariance. Consider the estimation of 
the center of the following set of numbers: [10  10.1  10.1  10.1  10.2  10.2  10.3  10.3]. 
For these data, the mean is 10.16, whereas the median equals 10.15. These two statistics 
do not differ much as there are no outliers. However, if the last measurement was 
wrongly recorded as 103 instead of 10.3, the mean would be 21.75, whereas the median 
still would equal 10.15. This exemplifies the robust nature of the median versus the non-
robust (classical) nature of the mean. Outliers can occur by mistake (as in this example by 
misplacement of a decimal point), or other random error, for example, through an 
instrument malfunction or a measurement error. These are typically the samples that 
should be discovered and corrected or else removed from the data.  

Another type of atypical observation is a systematic error where some measurements 
belong to a population other than the one under study (caused, for example, by a change 
in the experimental conditions). Often atypical observations reveal unique properties. 
Consequently, finding this kind of outlier can lead to new discoveries. Outliers are thus 
not always wrong or bad, although they are often referred to negatively. They are, 
however, different than the bulk of the data under consideration. 
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Figure 13-1. Simulated data set with outliers. 

Outliers are the rule rather than the exception in real-world applications. This is 
especially true in the area of on-line process analysis, where outliers are always present 
because process sensors rarely operate within specifications 100% of the time. In general, 
the analyst has limited control over the process that generates the calibration data. 
Moreover, detecting multivariate outliers is very difficult, as illustrated in Figure 13-1. 
The outlying observations (indicated by ‘+’) do not have abnormal values in either of the 
two variables, and hence will not be spotted by looking at the individual variables. The 
outliers can only be found by taking into account the covariance structure (the green 
ellipse) of the regular data (indicated by ‘o’). The tolerance ellipse based on the classical 
covariance estimate (red dashed circle) is enlarged due to the presence of the outliers. In 
contrast, the robust Minimum Covariance Determinant (MCD) estimator (Rousseeuw, 
1984) is an alternative method of calculating the covariance and clearly encloses only the 
regular data points (green ellipse). The need for and effectiveness of robust statistical 
methods has also been described in many papers and books; see Hampel (1986), Huber 
(1981), Rousseeuw and Leroy (1987). 

Robust estimation of the covariance matrix  

One of the keystones of the robust methods included in PLS_Toolbox through the 
LIBRA toolbox is the Minimum Covariance Determinant (MCD) estimator (Rousseeuw, 
1984), a multivariate estimator of location (mean) and scale (variance/covariance). The 
main function of the MCD-estimator is to examine the data set X of size m by n for the h-
subset containing the most concentrated data points, or, more formally, to search for the 
subset containing h > m/2 observations whose covariance matrix has the lowest 
determinant. (Note that the determinant of a covariance matrix is proportional to the 
volume enclosed by the corresponding data.) The raw MCD estimate of location is then 
the average of these h points, whereas the raw MCD estimate of scatter is their 
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covariance matrix (multiplied by a consistency factor which is discussed later). Based on 
these raw MCD estimates, a reweighting step can be added which considerably increases 
the finite-sample efficiency (a measure of the desirability of an estimator equal to the 
minimum variance in an estimated parameter divided by its actual variance) (Rousseeuw 
and Van Driessen, 2000).  

The number h is also related to the fraction of outliers (1- α) by the equation 

 h = ( αm )int  (13-1) 

where m indicates the total number of observations in the data set, and (...)int indicates the 
integer part of αm. The MCD estimator can resist (m-h+1)/m outlying observations, 
hence h determines the robustness of the estimator. More formally, it is said that the 
MCD estimator has a breakdown value of (m-h+1)/m. The breakdown value of an 
estimator is the proportion of arbitrarily large incorrect observations an estimator can 
handle before giving an arbitrarily large result. The highest possible breakdown value of 
the MCD estimator is attained when h = [(m+n+1)/2].  

When a large proportion of contamination by outliers is presumed, h should be chosen 
close to 0.5m or α should be set equal to 50%. In other cases, an intermediate value for h, 
such as 0.75m or α = 75%, is recommended to obtain a higher finite-sample efficiency. In 
the algorithms, the default value α = 0.75 is used, unless you have a priori information 
about the data set that can be translated into a smaller or larger value for α. 

The mcdcov function is an implementation of the FAST-MCD algorithm of Rousseeuw 
and Van Driessen (1999). Note that the MCD can only be computed if n < h, otherwise 
the covariance matrix of any h-subset has zero determinant. Because m/2 < h, the number 
of variables n must be less than m/2. However, detecting several outliers becomes 
intrinsically delicate when m/n is small, as some data points may become coplanar by 
chance. This is an instance of the “curse of dimensionality”. It is therefore recommended 
that m/n > 5 when α = 0.5 is used. For small m/n it is preferable to use the MCD 
algorithm with α = 0.75. 

The MCD location and scatter estimates are affine equivariant, which means that they 
behave properly under affine transformations of the data. That is, for a data set X in 
IRmxn the MCD estimates ( )ˆˆ ,µ Σ  satisfy 

 
ˆ ˆ( 1 ) ( )
ˆ ˆ( 1 ) ( )

T
m

T T
m

v v

v

µ µ+ = +

Σ + = Σ

XA X A

XA A X A
 (13-2,3) 

for all non-singular n by n matrices A and vectors v ∈ IRn. The vector 1m equals the 
column vector (1,1,…,1)T of length m. 

Using LIBRA in MATLAB, the reweighted MCD estimator of a data matrix X is 
computed by typing:  
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>>out = mcdcov(X) 

at the command line. The algorithm then runs using all the default settings including α = 
0.75, 'plots'=1, 'cor'=0, 'ntrial'=500. Running the algorithm in this manner means 
that diagnostic plots will be drawn, a correlation matrix will not be computed, and the 
algorithm will use 500 random initial n+1 subsets. 

To change one or more of the default settings, the input arguments and their new values 
have to be specified. Assume, for example, that we have no idea about the amount of 
contamination (incorrect observations), and we prefer to apply a highly robust method 
and set α = 0.50. If we are interested in the corresponding MCD correlation matrix, we 
set new parameters by typing: 

>> out = mcdcov(X,'alpha',0.50,'cor',1) 

The optional arguments can be omitted (meaning that the defaults are used) or they can 
be called in an arbitrary order. For example,  

>>out = mcdcov(X,'cor',1,'alpha',0.50) 

and 

>>out=mcdcov(X,'alpha',0.50,'cor',1,'plots',1) 

would produce the same result.  

Note that the method of setting options for LIBRA functions is different than for 
PLS_Toolbox functions. In PLS_Toolbox functions, a single options structure can be 
obtained from the function and modified as desired, and then input to the function. In 
LIBRA functions, options are specified with option name/options value pairs, much like 
MATLAB handle graphics. To see all of the optional inputs, use the command line help 
for the function: help mcdcov. 

Example of MCD Method with Body and Brain Weight Data Set  

To illustrate the MCD method, we analyze the brain and body weight data discussed in 
Rousseeuw and Leroy, (1987). This bivariate data set (n = 2) consists of the body and 
brain weights of m = 28 animals, including 3 (extinct) dinosaurs. The data can be loaded 
into MATLAB and plotted with PLOTGUI by typing: 

>> load brain_weight 
>> plotgui(brains) 

In the plot controls window, select Body Mass (kg) in the x-axis menu, Brain Mass (g) in 
the y-axis menu. Set axes to logarithmic by selecting View/Log Scales/All and add labels 
by selecting View/Labels/Set 1. This produces the plot shown in Figure 13-2 (the labels 
have been moved on some points for clarity).  
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Figure 13-2. Plot of the Brain Weight data set with logarithmic scales. 

The MCDCOV function can now be used to determine the subset of samples with 
minimum determinant. Because of the very wide range in the data, it will be pre-
processed by taking a base 10 logarithmic transformation of both variables, as follows:  

>>out = mcdcov(log10(brains.data))  

The function will produce the MENU window shown in Figure 13-3 which allows the 
user to make a variety of plots. For now, select Exit and the following output structure is 
obtained:  
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Figure 13-3. MENU window from MCDCOV function. 

out =  
 
    center: [1.3154 1.8569] 
       cov: [2x2 double] 
       cor: [] 
         h: 21 
  Hsubsets: [1x1 struct] 
     alpha: 0.7500 
        rd: [1x28 double] 
      flag: [1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 1 0 1 1 1] 
        md: [1x28 double] 
    cutoff: [1x1 struct] 
     plane: [] 
    method: [1x42 char] 
     class: 'MCDCOV' 
   classic: 0 
         X: [28x2 double] 

The output consists of several fields that contain the location estimate ('out.center'), 
the estimated covariance matrix ('out.cov'), and the correlation matrix ('out.cor'). 
Other fields such as 'out.h' and 'out.alpha' contain information about the MCD 
method, while some of the components (e.g., 'out.rd', 'out.flag', 'out.md' and 
'out.cutoff') can be used for outlier detection and to construct some graphics. The 
'out.class' field is used to detect which figures should be created for this analysis. 
Detailed information about this output structure (and that of the raw estimates) can be 
found in the help file of the mcdcov function. 

The robust distance of an observation i is used to detect whether it is an outlier or not. It 
is defined as 

 RDi = 1ˆˆ ˆ( ) ( )T
i MCD MCD i MCDx xµ µ−− Σ −  (13-4) 

with   öµMCD and   
öΣMCD  defined as the estimates of MCD location and scatter.  This robust 

distance is the straightforward robustification of the Mahalanobis distance 

 MDi = (xi − x )T S−1(xi − x )  (13-5) 

which uses the classical mean x  and empirical covariance matrix S-1 as estimates of 
location and scatter. Under the normal assumption, the outliers are those observations 
having a robust distance larger than the cut-off-value χn,0.975

2 , and they receive a flag 

equal to zero. The regular observations whose robust distance does not exceed  
  
χn,0.975

2  

have a flag equal to one. 
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The algorithm provides several graphical displays based on the robust distances and the 
Mahalanobis distances to help visualize any outliers and to compare the robust and the 
classical results. One of these graphics is the distance-distance plot (Rousseeuw and Van 
Driessen, 1999) which displays for each observation its robust distance RDi versus its 
Mahalanobis distance MDi. A horizontal and a vertical line are drawn at the cutoff value 

  
χn,0.975

2 .  Figure 13-4 shows the distance-distance plot for the body and brain weight 

data, with lines drawn at the cutoff value of 2.72. A similar figure can be obtained by 
clicking the Distance-distance plot button in the MCDCOV Menu. Five outlying 
observations can be clearly seen in Figure 13-4: human, rhesus monkey, triceratops, 
brachiosaurus and diplodocus. However, the classical method only identifies the 
brachiosaurus measurement as an outlier, as its marker appears beyond the vertical cutoff 
line indicating the Mahalanobis distance. The other four outlying observations (human, 
rhesus monkey, triceratops and diplodocus) have a large robust distance but a small 
Mahalanobis distance. They are not recognized as outliers when using the classical 
approach. 
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Figure 13-4. Brains data set: distance-distance plot. 

As this data set is bivariate, we can understand its structure much better by making a 
scatter plot (Figure 13-5). Superimposed on the scatter plot is the 97.5% robust 
confidence ellipse, which encloses the set of points whose robust distance is equal to 

  
χn,0.975

2 , as well as the 97.5% classical confidence ellipse, which encloses the set of 

points whose Mahalanobis distance is equal to χn,0.975
2 . Observations outside these 

tolerance ellipses are classified as outliers. We again notice the five outliers found with 
the MCD method, while the classical tolerance ellipse again encloses all outliers except 
one, the brachiosaurus measurement, which is shown as a borderline case. 
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Figure 13-5. Brains data set: Tolerance ellipses. 

Robust linear regression 

The multiple linear regression model assumes that, in addition to the n regressors or x-
variables, a response variable y is measured, which can be explained as an affine 
combination of the predictors. More precisely, the model says that for all observations 
(xi,yi) with i = 1,…, m  it holds that 

  yi = β0 + β1xi1 +L + βnxin + ε i = β0 + β
T xi + εi  (13-6) 

where the errors εi are assumed to be independent and identically-distributed with zero 
mean and constant variance σ 2 . Applying a regression estimator to the data yields n+1 
regression coefficients 0

ˆ ˆ ˆ( , , )T
nθ β β= … . The residual ri of case i is defined as 

1ˆˆ T
i i i

i

y y y
x

θ
 

− = −  
 

. 

The ordinary least squares (OLS) estimator minimizes the sum of the squared residuals, 
but is very sensitive to outliers. LIBRA PLS_Toolbox also contains the Least Trimmed 
Squares (LTS) estimator (Rousseeuw, 1984) which minimizes the sum of the h smallest 
squared residuals, or 

 2
:

1

ˆ min ( )
h

LTS i m
i

r
θ

θ
=

= ∑  (13-7) 

Note that the residuals are first squared, and then ordered  
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 (r2)i:1 ≤ (r2)i:2 ≤ …≤ (r2)m:m (13-8) 

The interpretation of the h value in this method is the same as for the MCD estimator, and 
thus h should be chosen between m/2 and m. Setting h = m yields the OLS estimator. For 
h ≈ m/2 we find a breakdown value of 50%, whereas for larger h we obtain a breakdown 
value of (m-h+1)/m. The function ltsregres contains an implementation of the FAST-
LTS algorithm (Rousseeuw and Van Driessen, 2000) which is similar to the FAST-MCD 
method. 

The LTS estimator is regression, scale and affine equivariant. That is, for any X = (x1, 
…, xm )T and y = (y1,…, ym)T it holds that 

 
1 1
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θ θ

θ β β β− −
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=
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(13-9,10,11) 

for any vector v ∈IRn, any constant c and any nonsingular n by n matrix A. Again 
1m = (1,1,...,1)T ∈ IRm. This implies that the estimate transforms correctly under affine 
transformations of both the x and y variables. 

Example of Robust Regression with Stars data set  

We will now consider an example of robust regression with the stars data set (Rousseeuw 
and Leroy, 1987). This bivariate data set (n = 2) contains the surface temperature and the 
light intensity of m = 47 stars in the direction of Cygnus. The data were preprocessed by 
taking a logarithmic transformation of both variables. The linear model we will fit onto 
these data is 

 yi = β0 + β1x + ε  (13-12) 

The regression coefficients β0  and β1  will be estimated with the OLS estimator as well 
as the LTS estimator.   
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Figure 13-6. Stars data: scatter plot. 

The data for this example can be viewed by performing the following commands: 

>> load stars 
>> plotgui(stars) 

and selecting Temperature in the x menu and Intensity in the y menu of the Plot Controls 
window. Sample numbers can be added by selecting View/Numbers. From the resulting 
scatter plot, shown in Figure 13-6, we see that the majority of the data follow a linear 
trend but four outlying stars are apparent in the upper left. In astronomy this is a well-
known phenomenon: the 43 stars in the data cloud belong to the main sequence (common 
hydrogen fusing stars), whereas the four remaining stars are giant stars with low surface 
temperature but high luminosity due to their great size. The data points representing the 
four giant stars are not incorrect observations, but simply come from another population 
than the regular data.  

A LTS regression can be performed using the command:  

>> out=ltsregres(stars.data(:,1),stars.data(:,2),'intercept',1,... 
'h',floor(0.75*47),'classic',0,'plots',1) 

which generates the interface, which allows access to several diagnostic plots, shown in 
Figure 13-7. When the Exit button is pressed, the following output results: 
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Figure 13-7. MENU window from LTSREGRES function. 

out =  
 
slope: 3.0462 
int: -8.5001 
fitted: [47x1 double] 
res: [47x1 double] 
scale: 0.3365 
rsquared: 0.5544 
h: 35 
Hsubsets: [1x1 struct] 
alpha: 0.7447 
rd: [1x47 double] 
resd: [47x1 double] 
cutoff: [1x1 struct] 
flag: [47x1 logical] 
method: 'Least Trimmed Squares Regression.' 
class: 'LTS' 
classic: [1x1 struct] 
X: [47x1 double] 
y: [47x1 double] 

in which the field ‘classic’ stores the OLS computations: 

  
slope: -0.4133 
int: 6.7935 
fitted: [47x1 double] 
res: [47x1 double] 
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scale: 0.5646 
rsquared: 0.0443 
md: [47x1 double] 
resd: [47x1 double] 
cutoff: [1x1 struct] 
flag: [47x1 logical] 
class: 'LS' 
X: [47x1 double] 
y: [47x1 double] 

The OLS-fit for the stars data is thus: 

 - 0.4133 xi + 6.7935  

while the LTS-fit is 

 3.0462 xi - 8.5001  

Note that the slope term changes sign in this example. In the OLS model the slope is 
negative, suggesting that intensity goes down with increased temperature. Drawing the 
regression lines onto a scatterplot shows that the OLS fit was highly influenced by the 
four giant stars whereas the LTS fit nicely describes the linear trend in the majority of the 
data (Figure 13-8). 
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Figure 13-8. Stars data: OLS and LTS fit. 
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With the output of the ltsregres function, one can produce many plots as graphical 
tools for model checking and outlier detection, such as a normal quantile plot of the 
residuals, and a residual outlier map. The latter, shown in Figure 13-9 for the stars data, 
displays the standardized LTS residuals (the residuals divided by a robust estimate of 
their scale) versus the robust distances obtained by applying the MCD estimator on the x 
variables. The residual outlier maps are divided by cutoff lines into six different areas by 
which we can classify the outliers into four different groups: regular observations, good 
leverage points, bad leverage points, and vertical outliers.  

Figure 13-9. Stars data: Standardized LTS residuals versus robust distances with different 
types of outliers indicated. 

In Figure 13-9 the regular observations do not exceed any of the cutoffs. The good 
leverage points are these observations having a small standardized residual but large 
robust (or Mahalanobis) distance. These data points confirm the linear relationship at 
larger x values. The observations which need to be examined more closely are the vertical 
outliers and the bad leverage points. The vertical outliers are the data points with regular 
x values but with y-values deviating from the majority of the y values; hence, they have a 
large standardized residual. The observations having aberrant x- and y-values are called 
the bad leverage points. Both vertical outliers and bad leverage points tend to pull the 
regression line towards them and thus greatly affect the regression line. 

The outlier map generated from the classical OLS regression estimates for the Stars data 
is shown in Figure 13-10. Compared with the robust residual outlier map, the classical 
OLS map would lead to considerably different conclusions.  Looking at the robust 
residual outlier map in Figure 13-9, five bad leverage points (cases 7, 11, 20, 30, and 34) 
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can be observed. However, the classical residual outlier map in Figure 13-10 describes 
cases 11, 20, 30, and 34 as good leverage points. The robust LTS method thus pinpoints 
the giant stars as bad leverage points, whereas the OLS method classifies them as good 
leverage points. Clearly, the giant stars attracted the OLS fit towards them; this 
phenomenon could already be observed in Figure 13-8 where the regression lines were 
fitted onto the data.  
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Figure 13-10. Stars data: Standardized LS residuals versus Mahalanobis distances. 

When using LTS regression, the scale of the errors σ can be estimated by 

 2
, :

1

1ˆ ( )
h

LTS h m i m
i

c r
h

σ
=

= ∑  (13-13) 

where ri are the residuals from the LTS fit, and ch,m makes σ̂  consistent and unbiased at 
Gaussian error distributions. The regression outliers are then identified by their 
standardized LTS residuals ˆi LTSr σ .  

It should be stressed that LTS regression does not throw away a certain percentage of the 
data. Instead, it finds a majority fit, which can then be used to detect the actual outliers. 
The purpose is not to delete and forget the points outside the tolerance band, but to study 
the residual plot in order to find out more about the data. For instance, we notice star 7 
intermediate between the main sequence and the giants, which might indicate that this 
star is evolving to its final stage.  
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In regression analysis, inference is very important. The LTS by itself is not suited for 
inference because of its relatively low finite-sample efficiency. This issue can be resolved 
by carrying out a reweighed least squares step. To each observation i, one assigns a 

weight wi based on its standardized LTS residual, by setting wi := w(|
ˆ

i

LTS

r
σ

|) where w is a 

decreasing continuous function. A simpler way, but still effective, is to put  

 i ˆ1       if r / 2.5
0      otherwise

LTS
iw

σ ≤= 


 (13-14) 

Either way, the reweighed LTS fit is then defined by  

 minimize wiri
2

i=1

m

∑  (13-15) 

which can be computed quickly. The result inherits the breakdown value of the LTS 
regression, but is more efficient and yields all the usual inferential output such as t-
statistics, F-statistics, an R2 statistic, and the corresponding p-values.  

Now, if we also want a reliable prediction of q > 1 properties at once, based on a set of n 
explanatory variables, the use of a multivariate regression method is appropriate. The 
linear regression model is then formulated as  

 yi = β0 + ßTxi + єi    i = 1,…,m (13-16) 

with yi and єi being q-dimensional vectors that respectively contain the response values 
and the error terms of the ith observation with covariance matrix Σє.  

To cope with such data, we can use the MCD-regression method (Rousseeuw et al., 
2004). It is based on the MCD estimates of the joint (x,y) variables and thereby yields a 
highly robust method. Within the toolbox, this method can be called with the mcdregres 
function.  

Robust Principal Component Analysis 

PCA captures the largest amount of variance of the data possible with the first and each 
subsequent component. These components are linear combinations of the original 
variables. Looking at them can lead to a better understanding of the different sources of 
variation in the data. As a data reduction technique, PCA is frequently the first step in the 
analysis of a high-dimensional data set, followed by classification, clustering or other 
multivariate techniques. The goal of a robust PCA method is to obtain principal 
components that are not influenced much by outliers.  

A first group of robust PCA methods is obtained by replacing the classical covariance 
matrix by a robust covariance estimator, such as the reweighed MCD estimator (Croux 
and Haesbrouck, 2000). Unfortunately, the use of these affine equivariant covariance 
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estimators is limited to small to moderate dimensions. To see why, let us again consider 
the MCD estimator. As already explained, the MCD estimator can only be computed if 
the number of variables n is smaller than the parameter h. Since h also needs to be 
smaller than the number of observations m, consequently n must be smaller than m which 
is not the case for high-dimensional data sets.  

A second problem is the computation of these robust estimators in high dimensions. 
Today's fastest algorithms can handle up to about 100 dimensions, whereas there are 
applications, e.g., spectroscopy, with dimensions in the thousands. Moreover, the 
accuracy of the algorithms decreases with the dimension n, so it is recommended for 
small data sets not to use the MCD in (say) more than 10 dimensions. 

Another approach to robust PCA has been proposed in Hubert et al. (2005) and is called 
ROBPCA.  This method combines ideas of both projection pursuit and robust covariance 
estimation. The projection pursuit part is used for the initial dimension reduction. Some 
ideas based on the MCD estimator are then applied to this lower-dimensional data space. 
Simulations have shown that this combined approach yields more accurate estimates than 
the raw projection pursuit algorithm, called RAPCA (Hubert and Verboven, 2001). The 
entire description of the ROBPCA method can be found in Hubert et al. (2005). 

Since the ROBPCA algorithm is rather complicated, we only describe its main stages. 

First, the data are preprocessed by reducing their data space to the affine subspace 
spanned by the m observations. As a result, the data are represented using at most m –
 1 = rank(XC) variables without loss of information. 

In the second step, a measure of outlyingness is computed for each data point (Stahel 
1981, Donoho 1982). This measure is obtained by projecting the high-dimensional data 
points on many univariate directions d through two data points. On every direction the 
univariate MCD estimator of location MCDµ̂ and scale MCDΣ̂ is computed on the projected 
points xj

Td (j = 1… m), and for every data point its standardized distance to that center is 
measured. Finally, for each data point its largest distance over all the directions is 
considered. This yields the outlyingness: 
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outl max
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x d
µ

σ
−

=  (13-17) 

Next, the covariance matrix hΣ̂ of the h data points with the smallest outlyingness values 
is computed.  

The last stage of ROBPCA consists of projecting all the data points onto the k-
dimensional subspace spanned by the k largest eigenvectors of hΣ̂  and of computing their 
center and shape by means of the reweighed MCD estimator. The eigenvectors of this 
scatter matrix then determine the robust principal components which can be collected in a 
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loading matrix P with orthogonal columns. The MCD location estimate xµ̂ serves as a 
robust center. 

Note that classical PCA is not affine equivariant because it is sensitive to a rescaling of 
the variables, though it is still orthogonally equivariant, which means that the center and 
the principal components transform appropriately under rotations, reflections and 
translations of the data. More formally, classical PCA allows transformations XQ for any 
orthogonal matrix Q (that satisfies Q-1 = QT). Any robust PCA method thus only has to be 
orthogonally equivariant. 

Example of Robust PCA with Octane data (Esbensen,  2001) 

We will illustrate ROPBCA and its diagnostic tools on the Octane data set from Esbensen 
(2001), which consists of m = 39 NIR-spectra of gasoline at n = 226 wavelengths from 
1100 to 1550 nm. The data can be viewed by executing the following MATLAB 
commands: 

>> load octane 
>> plotgui(spec) 

In the Plot Controls window, select Plot/Data Summary, then select Data in the y 
menu. The result is shown in Figure 13-11. It is known that six of the samples, numbers 
25, 26 and 36-38, are anomalous because alcohol was added. Let us see how the classical 
and the robust PCA methods cope with this. We will first use the LIBRA command 
robpca, then do the analysis in the Analysis interface. 
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Figure 13-11. Octane data. 

If we knew the optimal number of components k, we could call the robpca method with k 
specified, e.g., 
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>> out=robpca(spec.data,'k',3) 

Otherwise, we need to select the number of principal components k. The function call 
becomes 

>> out=robpca(spec.data) 

which generates a scree plot of the eigenvalues, as shown in Figure 13-12, and a cross 
validated Robust Predicted Error Sum of Squares (R-PRESS) plot, as in Figure 13-13. 
The scree plot is a graph of the monotonically decreasing eigenvalues. The optimal 
number k is then often selected as the one where the kink in the curve appears. From the 
scree plot of the Octane data in Figure 13-12, we decide to retain k = 3 components for 
further analysis.  

In the output structure from the function robpca we find  
 
P: [226x3 double] 
L: [0.0114 0.0017 1.7362e-004] 
M: [1x226 double] 
T: [39x3 double] 
k: 3 
h: 32 
Hsubsets: [1x1 struct] 
sd: [39x1 double] 
od: [39x1 double] 
cutoff: [1x1 struct] 
flag: [1x39 logical] 
class: 'ROBPCA' 
classic: [1x1 struct] 

where the columns of P contain the robust eigenvectors, L is the vector with the 
corresponding robust eigenvalues, M is the robust centering vector and the columns of T 
contain the robust principal components. Other output variables hold information about 
the method and some of them will be used later on to draw outlier maps. 
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Figure 13-12. Octane data: Eigenvalue scree plot. 
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Figure 13-13. Octane data: Robust PRESS curve. 
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However, if we are more interested in the performance of our PCA model for prediction, 
a look at the robust PRESS-curve (Figure 13-13) will be more suitable. The robust 
PRESS statistic is defined as follows: 

 R-PRESSk = 
2

,
1

1

1 ˆ
m

i i i km
i

i
i

w x x
w

−
=

=

−∑
∑

 (13-18) 

with ,ˆ i kx− the estimated xi value based on a PCA model with k components and 
observation i omitted. The weight wi is zero in case observation i was considered to be an 
outlier during the modeling process. When modeling contaminated data, we do not want 
to introduce the prediction errors of the outliers, so adjusting the classical PRESS statistic 
with these weights gives us a statistic which is more resistant to outlying observations. To 
look for the optimal k-value in the R-PRESS curve, we must look for the point where the 
curve reaches its minimum and flattens out. For the Octane data k = 3 components may 
be a good choice. One could argue that k = 6 has a smaller R-PRESS value but this is a 
relatively small improvement.  

To visualize and classify the outliers, we can make score outlier maps, as shown in 
Figure 13-14 for the robust model and Figure 13-15 for the classical model. For each 
observation, the x-axis displays the score distance SDi, (also known as Hotelling’s T2), 
within the PCA subspace 

 SDi =   ti
TΛ−1ti  with Λ = 

 

λ1 L 0
M O M
0 L λk

















 (13-19) 

and on the y-axis the orthogonal distance ODi (the square root of Q) to the PCA subspace 

 ODi = ˆi x ix Ptµ− −   (13-20) 

where ˆxµ  is the (robust) center of X. For the score distances, we use the property that 
normally distributed data have normally distributed scores, and consequently their 
squared Mahalanobis distances have a χk

2  distribution. Hence, we use as cut-off value 

  
χk ,0.975

2 . For the orthogonal distances the approach of Box (1954) is followed. The 

squared orthogonal distances can be approximated by a scaled χ2 distribution which in its 
turn can be approximated by a normal distribution using the Wilson-Hilferty 
transformation. The mean and variance of this normal distribution are then estimated by 
applying the univariate MCD to the ODi

2 3 .  

Based on their cut-offs (cSD and cOD), these distances yield a classification of the 
observations (summarized in Table 1):  
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• the regular data are those observations whose SD and OD are both small, 

meaning SD < cSD  and OD < cOD 
• the good PCA-leverages points have a large SD and a small OD,  

so SD > cSD and OD < cOD 
• the orthogonal outliers have a small SD and a large OD,  

yielding SD < cSD and OD > cOD 
• the bad PCA-leverage points having large SD and large OD which results in SD > 

cSD and OD > cOD.  
 

The latter two types of observations are highly influential for the classical PCA as this 
method tries to make all orthogonal distances as small as possible. For more information 
on this outlier map and the horizontal and vertical cut-off values, we refer to Hubert et al. 
(2005). 

Table 1. Overview of the different types of observations based on their SD and OD 

Distances small SD large SD 

large OD orthogonal outlier bad PCA-leverage point 

small OD regular observation good PCA-leverage point 

On the robust outlier map of the Octane data, Figure 13-14, we immediately spot spectra 
numbers 25, 26, and 36-39 as bad PCA-leverage points. However, in Figure 13-15, the 
outlier map of the classical PCA, only spectrum 26 is indicated as a bad PCA-leverage 
point and spectrum 25 is indicated as an orthogonal outlier. This shows that the classical 
PCA was indeed influenced by the bad PCA-leverage points. They tilted the PCA-
subspace towards them and hence masked the others for being recognized as bad PCA-
leverage points in the classical analysis. 
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Figure 13-14. Octane data: robust score outlier map. 
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Figure 13-15 Octane data: classical score outlier map. 

The same analysis can also be performed in the Analysis tool. Start the tool by typing 
pca at the MATLAB prompt. Load the variable spec into the tool by choosing File/Load 
Data/Xblock and selecting spec in the dialog box. Set the tool to perform robust PCA by 
selecting Edit/Options/PCA Method Options. A dialog box as shown in Figure 13-16 
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will appear. Set the menu to the right of ‘algorithm’ to ‘robust pca’, then click OK to 
close the window.  

 

Figure 13-16. Options GUI from Analysis tool. 

An analysis can now be done with robust PCA in the same manner as when one works 
with the interface with classical PCA. There are several important differences, however. 
Because the cutoff points are determined after the number of PCs has been specified, the 
robust PCA model is not nested; that is, the data the model is based on may change as the 
number of PCs is changed, and thus the early factors in the model may also be 
influenced. Thus, when the model is first calculated, the variance captured table only 
goes out to a one-PC model and subsequent PCs are not calculated. To see models with 
more PCs, click on the line of the table corresponding to the number of PCs desired and 
click Calculate.  

Another important point is that robust PCA will set outlier data points to be excluded. To 
see these points, in the Plot Controls window choose View/Excluded data. The points 
will then show up as slightly grayed out.  

Robust Regression for high-dimensional data 

In case the number of variables n is larger than the number of observations m, there is no 
unique OLS solution, and neither can the LTS estimator be computed. Moreover, in any 
data set with highly correlated variables (multicollinearity), both OLS and LTS have a 
high variance. Two very popular solutions to this problem are offered by Principal 
Component Regression (PCR) and Partial Least Squares Regression (PLSR). Both 
methods first project the x-data onto a lower dimensional space, either based on 
maximizing variance described in the x-data (PCR) or based on maximizing the 
covariance between the x-data and y-data (PLS). The general idea is to compress the data 
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without losing important information. Next, a multiple (multivariate) regression analysis 
is performed in this lower dimensional design space. 

More precisely, both PCR and PLSR assume the following bilinear model which 
expresses the connection between the response variable(s) and the explanatory variables 
as: 

 
xi = µx + P ⋅ ti + fi

yi = µ y + Θ
T ⋅ ti + gi

 (13-21) 

with ti the k-dimensional scores, Θ the k by q sized slope matrix in the regression of yi on 
ti, k << p and q ≤ 1. In terms of the original predictors this bilinear model can be rewritten 
as 

 yi = β0 + ΒT xi + ei  (13-22) 

The regression coefficients are then calculated as 

 Β = P Θ (13-23) 

 β0 = µy - ΒTµx (13-24) 

To construct the scores ti, PCR applies PCA to the x-variables, whereas in PLSR they are 
constructed by maximizing the covariance between linear combinations of the x and y-
variables. As we are concerned with contaminated data, it is highly advisable to use 
robust alternatives. In analogy with classical PCR and PLSR, the robust versions apply 
ROBPCA on the x-variables, and on the joint (x,y)-variables, respectively. Next, a robust 
regression of the responses yi on the robust scores ti is applied. For PCR we can use the 
LTS or the MCD regression method, whereas for PLSR a regression based on the 
ROBPCA results is performed.  

Robust Principal Component Regression 

Example: The Octane data set (continued) 

Let us return to the Octane data from the previous section. Besides the 39 NIR-spectra 
this data set also contains a univariate (q = 1) response variable which consists of the 
octane number for every sample. We know from previous analysis that the samples 25, 
26, 36-39 were contained alcohol. We cannot use a classical least squares regression 
since the data clearly suffers from multicollinearity, so we apply a robust PCR analysis 
(Hubert and Verboven, 2003).  

First we have to select the optimal number of components kopt. Whenever we invoke the 
function rpcr with its default values, we can choose kopt by looking at the plots of the 
robust R2-values and the robust RSS-values. 

>>load octane 
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>>rpcr(spec.data,octane.data) 

In the univariate case (q = 1) the R2-plot shows us the values  

 Rk
2 = 1−

wiri,k
2

i=1

m

∑

wi ( yi − yw )2

i=1

m

∑
 (13-25) 

with 
 
yw = wi yi

i
∑ wi

i
∑  and k = 1,…,kmax. The R2-value says in a robust sense that more 

than 95% of the y-variability can be described by the fitted model. The curve will become 
flat when adding a component does not reduce the residual variance significantly. We can 
choose the optimal k such that the R2-curve attains a certain value, e.g. 80%, or until it 
becomes nearly flat. For the Octane data this means that k = 3 is a good choice, the curve 
becomes flat and the R2-value already reaches more than 95%.  

A second option is to look at the robust square root of the Residual Sum of Squares 
(RSS) also called the mean squared error (MSE) 

 RSSk = RMSEk =
1

wi
i=1

m

∑
wiri,k

2

i=1

m

∑    (13-26) 

where ri,k = ,ˆi i ky y−  is the residual of the i-th observation of the calibration set in a k 
component model. From Figure 13-17, we see that for the Octane data a first minimum is 
reached at k = 3 and a second one in k = 6. The ultimate goal is to have a RMSE as small 
as possible but we also have to keep in mind that we are looking for a dimension 
reduction in order to have a manageable and interpretable model.  
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Figure 13-17. Octane data: the R2-plot. 
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Figure 13-18. Octane data: RSS plot. 

Comparing the RMSE6 = 0.0202 against the RMSE3 = 0.0464 gives us a 2% decrease in 
the error. Moreover, by looking at the R2 we already know that we have a good prediction 
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model at k = 3. Taking all facts into account we decide to take 3 as the optimal number of 
components for this model. 

Thus far, the decision about kopt was based on the calibration data. It is also possible to 
perform a cross-validated version of the RMSE. The RMSECV can be defined in a robust 
way by taking into account weights wi  

 R-RMSECVk = ( )2

,
1

1
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m

i i i km
i
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−
=

=

−∑
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 (13-27) 

for univariate response variables yi. Now, if we choose kopt too small, much of the 
information in the data will be lost. Moreover, the regression model will not fit the data 
very well. On the other hand, if kopt is too large, overfitting will cause a loss of prediction 
power because the regression model was fit to the noise in the data. So instead of making 
a decision about the optimal number based on a statistic explaining the predictive ability 
(e.g. the RMSECV) or the goodness-of-fit (e.g. RMSE) alone, let us look at a 
combination of these measurements. 

 RCSk =   γ  R - RMSECVk
2 + (1− γ ) R-RMSEk

2  , 0 ≤ γ ≤ 1. (13-28) 

The Robust Component Selection statistic (RCS) as proposed by Engelen and Hubert 
(2005) allows us to choose whether we like to emphasize on the prediction (γ = 1) or on 
the goodness of fit (γ = 0) aspects of our regression model.  
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Figure 13-19. Octane data: Robust Component Selection plot. 
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Based on the curves in Figure 13-19, we decide to take k = 3 as our optimal choice for the 
Octane data. To produce this plot we have to call the rpcr function with the optional input 
variable ‘rmsecv’ set to one. 

>> out = rpcr(X, y, ‘rmsecv’,1) 

The output of the rpcr function also includes the score and orthogonal distances from the 
robust PCA analysis. By default, the PCA-score outlier map will again be plotted 
(Figures 13-14). In addition, both classical and robust residual outlier maps (Figures 20-
21) are generated. The function displays the standardized LTS residuals versus the score 
distances, and can be used to classify the observations according to the regression model. 
As can be seen from Table 2, we distinguish regular data (small SD and small absolute 
residual), good leverage points (large SD but small absolute residual), vertical outliers 
small SD and large absolute residual), and bad leverage points (large SD and large 
absolute residuals). Large absolute residuals are those that exceed χ1,0.975

2 = 2.24. Under 

normally distributed errors, this happens with probability 2.5%. The vertical outliers and 
bad leverage points are the most harmful for classical calibration methods as they disturb 
the linear relationship. 

Table 2. Overview of the different types of observations based on their SD and ResD distances 

Distances small SD Large SD 

large ResD vertical outlier bad leverage point 

small ResD regular observation good leverage point 

In Figure 13-20 we observe the six outlying spectra as good leverage points in the robust 
PCR regression model. Four other spectra are detected as vertical outliers (spectra 7, 9, 
13, and 32) and should be investigated in more detail. The classical PCR, on the other 
hand, does not discover the vertical outliers (Figure 13-21). Only spectrum 26 is 
highlighted as a good leverage point. The presence of contamination in the data clearly 
affected the classical analysis. 
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Figure 13-20. Octane data: robust regression outlier map. 
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Figure 13-21. Octane data: classical regression outlier map. 

Robust PCR can be performed in the Analysis GUI. Start the Analysis GUI by typing 
pcr at the command lin, or by starting the interface any other way and selecting 
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Analysis/PCR. Choose File/Load Data/Both from the menu and select spec for the x-
data and octane for the y-data. Choose Edit/Options/Method Options (PCR), which 
will bring up the window shown in Figure 13-22. Next to the algorithm label, select 
robustpcr from the menu, then click OK. Select Preprocess/X-block/mean center. A 
model can now be calculated by clicking the Calculate button. Note, however, that the 
variance captured table does not go beyond the first PC. To calculate a three-PC model, 
select the third line of the variance captured table and click Calculate again. The 
interface will now appear as shown in Figure 13-23. The PCR model can now be 
explored in the usual way. When viewing scores plots, choose View/Excluded Data to 
view the scores of the data points considered outliers and not used in the final model 
calculation. 

 

Figure 13-22 Options interface for PCR. 
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Figure 13-23 Analysis interface with robust PCR model variance captured table. 

Robust Partial Least Squares Regression 

Hubert and Vanden Branden (2003) developed a robust version of PLS known as 
RSIMPLS. The method starts by applying ROBPCA on the joint x- and y-variables in 
order to replace the empirical cross-covariance between X and Y and the empirical 
covariance matrix of X, by robust estimates, and then proceeds analogously to the 
SIMPLS algorithm. At the end, instead of the multivariate linear regression (MLR), a 
robust regression method will be performed. 

The proposed robust PLS algorithm has several equivariance properties. The ROBPCA 
method is orthogonally equivariant, which means that orthogonal transformations of the 
data (rotations, reflections) transform the loadings appropriately and leave the scores 
unchanged. Consequently, it can easily be derived that RSIMPLS is equivariant for 
translations and orthogonal transformations in x and y. More precisely, let u ∈ IRn, v ∈ 
IRq, C any n-dimensional orthogonal matrix and D any q-dimensional orthogonal matrix. 
If ( )0

ˆ ˆ,β Β  denotes the estimates by running RSIMPLS on the original data (xi, yi), it holds 

that: 
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Figure 13-24. Biscuit data : raw spectra. 

Example: Biscuit Dough data (Osborne et al., 1984) 

This data set consists of 40 NIR reflectance spectra of biscuit dough with measurements 
every two nanometers, from 1200nm up to 2400nm.  The responses are the percentages 
of four constituents in the biscuit dough: y1 = fat, y2 = flour, y3 = sucrose and y4 = water.  

The data can be viewed by executing the following MATLAB commands: 

>> load biscuit 
>> plotgui(spec) 

From the Plot Controls Window, select Plot/Data Summary, then select Data from the 
menu for Y data. The plot shown in Figure 13-24 is the result.  

Because there is a significant correlation among the regressors, it is appropriate to 
perform a multivariate regression. This can be done from the MATLAB command line 
with the rsimpls function as follows: 

>> out = rsimpls(spec.data,recipe.data) 
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Figure 13-25. Biscuit data : Robust R2-plot. 
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Figure 13-26. Biscuit data: Robust RSS plot. 

In this example the number of components k is limited to 4 by the algorithm to avoid 
overfitting. Similar to the RPCR analysis, we draw plots (Figures 13-25 and 13-26)  to 
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select the optimal number of components. Retaining three components gives us a R2 of  
96.7% and a RMSE of 0.4456. 
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γ = 1 (CV)
γ = 0.5
γ = 0 (RSS)

 

Figure 13-27. Biscuit data : Robust Component selection plot. 

Calculating a leave-one-out cross validated RMSE (Figure 13-27) also leads to the 
conclusion that kopt = 3.  

The robust score outlier map shows four bad PCA-leverage points: spectra 20, 21, 23, 
and 24. Observation 7 is an orthogonal outlier. The classical score outlier map, howeve, 
only reveals observation 23 and observation 15 as outliers. Moreover, spectrum 23 is 
considered to be a good PCA-leverage point. This shows again that the bad PCA-
leverages have such a large impact on the classical PCA-step of the algorithm that the 3-
dimensional PCA-subspace also tries to enclose them and consequently camouflages 
these outliers. 
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Figure 13-28. Biscuit data: Robust score outlier map. 
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Figure 13-29. Biscuit data: Classical score outlier map. 

For the Biscuit Dough data set, we obtain regression outlier maps for the robust (Figure 
13-28) and the classical SIMPLS (Figure 13-29) which are slightly different from the 
regression outlier maps we found for the Octane data. In multivariate calibration (q > 1), 
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the residuals are also q-dimensional with estimated covariance matrix ˆ
εΣ . On the vertical 

axis the outlier map then displays the residual distances, defined as 

 1ˆResD T
i i iε

−= Σr r  (13-31) 

with cut-off value
  
χq,0.975

2 . 

RSIMPLS shows that observation 21 has an extremely high residual distance. Other 
vertical outliers are 7, and 22, whereas there are a few boundary cases. The bad leverage 
points spotted in Figure 13-30 are the spectra 20, 23, and 24.  The classical SIMPLS on 
the other hand tries to make all the residuals as small as possible, resulting in exposing 
one clear vertical outlier 21. As in Figure 13-31, observation 23 is also distinguished, but 
due to its large score distance rather than to its residual distance, so it seems to fit the 
regression model rather well. 

Robust PLS can be performed in the analysis interface by selecting Analysis/PLS from 
the menu, then selecting Edit/Options/Method Options (PLS). In the interface select 
robust PLS from the menu next to algorithm. The analysis then proceeds as usual. To 
view outlier data points, select View/Excluded Data from the plot controls window when 
viewing scores plots.  

0 1 2 3 4 5
0

10

20

30

40

50

31
 433 2022

24

 7

23

21

R
es

id
ua

l d
is

ta
nc

e

Score distance (3 LV)

RSIMPLS

 

Figure 13-30. Biscuit data : robust regression outlier map. 
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Figure 13-31. Biscuit data: classical regression outlier map. 
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14. Distribution Fitting Tools 
 
NOTE: Throughout this section, we assume that you will want to investigate the 
distributional properties of a vector of data. The data should be stored as a column vector 
in MATLAB. Our examples in this section use random data generated by specifying 

 
>> x = normdf('random',[100 1]) 
 
The Distribution Fitting Tool Set supplies capabilities for investigating the distribution of 
a sample of data. This includes functions for graphically assessing the fit of a sample to a 
distribution, as well as formal statistical tests. In addition, these tests and plots may be 
incorporated in your own analytical tools. 
 

Probability Distributions 
 
The Distribution Fitting Tool Set supports sixteen distributions. For each distribution, 
there is a function input describing the method being called. These methods include: 
• Probability density function ('density', 'd') 
• Cumulative probability (distribution) function ('cumulative', 'c') 
• Quantile (inverse probability) function ('quantile', 'q') 
• Random number generator ('random', 'r') 
 
Table 14.1 lists the available distributions and their associated function names. 
 

Table 14.1. Distributions and their function names. 
Distribution  Function Name 
Beta   betadf 
Cauchy   cauchydf 
Chi-squared  chidf 
Exponential  expdf 
Gamma   gammadf 
Gumbel   gumbeldf 
Laplace   laplacedf 
Logistic   logisdf 
Lognormal   lognormdf 
Normal   normdf 
Pareto   paretodf 
Rayleigh   raydf 
Student's t   tdf 
Triangle   triangledf 
Uniform   unifdf 
Weibull   weibulldf 
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So, to find the quantile of the normal distribution for a value of 0.975 (for a two-sided 
test of the mean at, for instance, significance level 0.05), we can type: 

 
>> normdf('q',0.975,0,1) 
ans =  
1.9600 
 
All the above commands can be used either in an interactive way or in your own 
functions and scripts. In addition, the sixteen distributions are also supported in the 
goodness-of-fit tests and statistical plots. Commands that support the distributions expect 
you to provide the name of the distribution as one of the input arguments. Below is a 
table of names along with minimal acceptable abbreviations. Note that you do not have to 
abbreviate the distribution name if you choose not to.  
 
Distribution  Abbreviation  Distribution  Abbreviation  
Beta   bet   Lognormal  logn  
Cauchy  cau   Normal  nor 
Chi-squared  chi   Pareto   par  
Exponential  exp   Rayleigh  ray  
Gamma  gam   Student's t  stu 
Gumbel  gum   Triangle  tri 
Laplace  lap   Uniform  uni 
Logistic  logi   Weibull  wei 
 
These names are used for commands such as 
plotqq(x,'distribution') 
plotcqq(x,'distribution') 
parammle(x,'distribution') 
 
where distribution  is the name (which may be abbreviated as indicated in the table) of 
the candidate distribution to consider in the command. For example, we can test the 
consistency of the random number generator and estimator at the same time (for the 
exponential distribution in this case) by typing: 

 
>> parammle(rexp(100000,3.5),'exp') 
ans =  
a: 3.5031 
b: 0 
 

Parameter Estimation 
 
You can obtain best-fit parameter estimates for the supported distributions with the 
parammle command. Note that the command returns a structure with up to three 
parameter estimates. See the Reference Manual entries for details on individual 
distributions. 
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>> n = normdf('r',[1000 1],3,2) ; 

 
Now, using this randomly generated data (from known distributions), let's see how the 
command can be used to find the maximum likelihood estimates of the candidate 
distributions. 

 
>> parammle(n,'normal') 
ans =  
a: 2.9097 
b: 1.9691 
 
Note that some distributions (beta, Cauchy, gamma, Gumbel, and Weibull) will take 
longer to find the maximum likelihood estimates, as the estimators are not analytically 
known. Instead, they are solved for by optimizing the likelihood. The next step in 
estimating parameters is to decide if the distribution with the maximum likelihood 
estimates for the associated parameters fits the data (the sample). Assessing the fit is the 
subject of the next two sections. 
 

Hypothesis Tests 
 
The Distribution Fitting Tool Set includes tests to formally assess the fit of data to 
distributions. In the previous section, we generated 1000 random numbers from a normal 
distribution. What if we had asked for the maximum likelihood estimates for the 
exponential distribution? We would have seen 

 
>> parammle(n,'exponential') 
ans =  
a:0.3136 
 
While we have obtained estimates for the distribution parameters, we have not obtained 
any information about how well that distribution fits the data in our sample. To do that, 
we use the testing commands. Below, we illustrate their use. 
 
>> chitest(n,'normal') 
ans =  
chi2: 14.1162 
pval: 0.7215 
df: 18 
classes: 19 
parameters: [1x1 struct] 
E: [1x19 double] 
O:[1 10 13 21 47 57 97 108 126 139 115 108 59 50 27 10 6 4 2] 
 

Using the defaults for the B v,w( ) = uv−1

0

1

∫ 1 −u( )w−1du  test (chi-squared test), we see that 
the first member of the returned structure is the test statistic and the second member is the 



368 

associated p-value. The null hypothesis of the test is that the candidate distribution is the 
parent distribution of the sample and the result of our test is not significant; there is not 
enough evidence to reject the hypothesis that the data come from a normal distribution. 
This is good as we actually synthesized the data from a normal distribution. Let's see 
what the test has to say for the logistic distribution. 

 
>> chitest(n,'logistic') 
ans =  
chi2: 25.3681 
pval: 0.1151 
df: 18 
classes: 19 
parameters: [1x1 struct] 
E: [1x19 double] 
O:[1 10 13 21 47 57 97 108 126 139 115 108 59 50 27 10 6 4 2] 
 
Again we fail to reject the hypothesis. This time the hypothesis was that the parent 
distribution was the logistic distribution. If we were faced with these results in practice, 
we would conclude that the normal distribution was a more likely candidate, as the p-
value for that test was less significant; there was even less evidence to reject the normal 
distribution as the parent distribution. In practice, you will see that it is common to have a 
situation where more than one distribution can be used to characterize the sample. How 
about if we look at a more asymmetric distribution like the beta distribution? 

 
>> chitest(n,'beta') 
ans =  
chi2: 57.1553 
pval: 5.8475e-006 
df: 18 
classes: 19 
parameters: [1x1 struct] 
E: [1x19 double] 
O:[1 10 13 21 47 57 97 108 126 139 115 108 59 50 27 10 6 4 2] 
 
The results here show significant evidence (at 0.0000058 level) that the parent 
distribution is not the beta distribution. Did you notice that the result of the test is a 
structure? The parameters field of the returned structure contains the maximum 
likelihood estimates for the candidate distribution. Using the test is another way (different 
from using the parammle command) to obtain these estimates. 
 
Another test is the Kolmogorov-Smirnov test. This test is less powerful than the chi-
squared test as it does not provide a p-value. However, since the probability value (were 
it included) is a monotonic function of the returned statistic (Dn), we can base our 
conclusions on the statistic itself. The smaller the value of the returned statistic, the less 
evidence exists to reject that candidate distribution. So, if we were looking for the best 
candidate, we would choose the one with the smallest value of the Kolmogorov-Smirnov 
statistic. 
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>> kstest(n,'normal') 
ans =  
ks: 0.4894 
Dn: 0.0155 
parameters: [1x1 struct] 
>> kstest(n,'logistic') 
ans =  
ks: 0.8606 
Dn: 0.0272 
parameters: [1x1 struct] 
>> kstest(n,'exponential') 
ans =  
ks: 9.9796 
Dn: 0.3156 
parameters: [1x1 struct] 
 
Again, we would conclude (based on these three comparisons) that the normal 
distribution best fits the data because the value of Dn is smallest for the most likely 
parent distribution. Instead of using these commands, however, we can use the distfit 
command to report the fit statistics for all of the distributions.  
 
The command  distfit(n) reports the results from most-likely to least-likely parent 
distribution using the chi-squared test. 
 p-value Distribution 
 0.7215 Normal 
 0.1151 Logistic 
 0.0017 Weibull 
 0.0000 Beta 
 0.0000 Laplace 
 0.0000 Uniform 
 0.0000 Triangle 
 0.0000 Rayleigh 
 0.0000 Pareto 
 0.0000 Lognormal 
 0.0000 Gumbel 
 0.0000 Gamma 
 0.0000 Exponential 
 0.0000 Chi squared 
 0.0000 Cauchy 
 
 Ordered from most likely to least likely parent distribution. 
 P-values are for rejecting the associated distribution 
 
It has been said that a picture is worth a thousand words, so the next section presents 
those commands that allow you to illustrate the fit of a distribution to the sample. You 
can do either before or after you have looked at the formal statistical test results. 
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Using these tests is backwards from most statistical analyses. Usually one wishes to reject 
the null hypothesis in some specific case, such that one may conclude the alternative 
hypothesis. In this case, however, we wish to reject all but one of the tests, such that we 
then conclude that there is evidence to exclude all but one possible parent distribution for 
the data. In many cases, we will fail to reject more than one test and must then choose 
one of the candidate distributions. We can do that by choosing the one with the smallest 
test statistic and therefore the least amount of evidence for rejection. 
 

Statistical Plots 
There are many plots available from the Distribution Fitting Tool Set; examples of each 
are included here. The data were generated as random Gaussian variates with mean zero 
and variance one, using the normdf command included in the Tool Set. On the left in 
Figure 14-1 is a symmetry plot. This plot illustrates the symmetric properties of a dataset. 
The plot on the right is a percentile plot. 
 
a)      b) 

      
Figure 14-1. a) Symmetry plot (PLOTSYM)of 100 random normals, b) Percentile plot 

(PLOTPCT) of 100 random normals. 
 
In addition to these exploratory data plots, the Tool Set includes commands for 
graphically investigating the distributional properties of a sample. One can produce 
empirical distribution plots, quantile plots (comparing to each of the supported 
distributions), conditional quantile plots (comparing to each of the supported 
distributions), and kernel density plots (comparing to each of the supported distributions). 
 
The empirical distribution plot is a plot of the estimated cumulative distribution. All 
cumulative distributions, F(x), have the following properties: 
1. F x1( )≥ F x2( )if x1 ≥ x2  
2. F −∞( ) = 0  
3. F ∞( ) = 1. 
 
For our sample of random normals (created using the command x=normdf('r',[100 
1])), the empirical distribution plot obtained from plotedf(x) is shown in Figure 14-2. 
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Figure 14-2. Empirical distribution plot. 

 
The quantile plot is used to graphically assess the fit of a sample to a candidate 
distribution. More accurately, this is called a quantile-quantile plot, because it depicts a 
graph of the sample quantiles versus the quantiles of the candidate distribution. Figure 
14-3 illustrates the quantile plot of our sample with the normal (correct) distribution (left) 
and the best-fit exponential distribution (right). The fit of the candidate distribution is 
assessed graphically by noting that using the correct distribution results in a diagonal line 
in the quantile plot. The plot on the left was obtained by specifying 
plotqq(x,'normal') and the plot on the right was obtained by specifying 
plotqq(x,'exp').  
a)       b) 

    
Figure 14-3. a) Quantile plot for normal distribution, b)Quantile plot for exponential 

distribution. 
 
Note how the quantiles for the best-fit normal distribution fall along the solid diagonal 
line in the graph on the left, but the quantiles of the best fit exponential distribution do 
not coincide with a diagonal line. 
  
In the Distribution Fitting Tool Set, the best-fit distributions include offsets such that the 
entire distribution is shifted to accommodate the range of the sample data. In addition to 
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plotting the quantile plots using the  plotqq command, we could also use the qtool 
interactive tool to choose candidate distributions for comparisons. This tool is illustrated 
in Figure 14-4. 
 

Figure 14-4. PLOTQQ GUI interface. 
 
Conditional quantile plots as described in by Kafadar and Spiegelman (1986) are also 
available in this Tool Set.  
 
Another method for investigating the density of a sample is to plot a density estimate. 
Density estimates are available from the toolbox where the density is calculated using a 
kernel density estimate. The user may use the interactive commands to investigate 
various kernel density estimates or may use the ktool graphical tool. 
 
Figure 14-5 shows two density estimates. On the left is a density estimate using the 
Epanechnikov kernel with an overlaid best-fit normal density, and on the right is a 
density estimate using the Parzen kernel with an overlaid best-fit exponential density. 
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Figure 14-5. Density estimate plots. 

 
Using the interactive tool (Figure 14-6) makes it easy to overlay different candidate 
distributions, select kernels, and alter the bandwidth selection for the kernel estimator.  

 
Figure 14-6. KTOOL GUI interface. 

Other Commands 
 
In addition to the focus on distribution fitting, the Tool Set also includes commands to 
assist investigations of usual hypothesis testing. There are commands for summarizing 
data, testing means, and testing variances. For exploratory data analysis, one typically 
wants to look at various summary measures. The summary command creates a structure 
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with these values. Additionally, the means command provides various measures of 
central tendency and the  pctile1 command provides percentiles. Using random data, we 
can see the usefulness of these commands: 

 
>> summary(n) 
ans =  
ks: 31.3267 
mean: 1.8708 
std: 2.8305 
n: 1000 
min: -5.9327 
max: 10.1949 
p10: -1.7725 
p25: -0.0858 
p50: 1.9606 
p75: 3.8402 
p90: 5.5716 
skew: -0.0307 
kurt: 2.8300 
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15. Returning Users – New Features and 
Release Notes for PLS_Toolbox 4.0 
Version 4.0 of PLS_Toolbox includes new functions, improvements in our existing 
functions, new "tool sets" of associated functions, and expansion of our Graphical User 
Interfaces. A list of all of these changes would be dry reading, so this chapter will 
highlight some of the most significant changes. There are, however, many underlying 
changes which are not reported in this document.  

Tool Sets 

This release of PLS_Toolbox includes several new "tool sets" which we have sub-divided 
into their own folders within PLS_Toolbox. These tool sets include: 
1. Distribution Fitting Tools – This tool set provides a large set of distribution fitting 

tools including fifteen different distributions. The tools create random distributions 
for any of these fifteen common distributions, and also calculate the quantile, 
probability density function, and cumulative density function for each distribution. 
There are also a variety of GUI and Plotting tools for analyzing and generating data. 
This tool set is comparable to the contents of The Mathworks' statistics toolbox. For 
more information on this tool set type:  

 helpwin pls_toolbox/dft 

2. Peak Fitting Tools – This tool set includes command-line tools for rapid locating and 
fitting of standard peak shapes. This initial release includes fitting of any number of 
Gaussian, Lorentzian, and/or mixed peaks. For more information on this tool set, 
type: 

 helpwin pls_toolbox/peakfit  

 and see the new functions peakfind, peakstruct, and fitpeaks. 

3. Optimization Tools – This tool set features a fast Levenberg-Marquardt nonlinear-
optimization tool. It is included for use with peakfit tools or for custom user 
applications. For more information on this tool set type: 

 helpwin pls_toolbox/optimize 

4. Robust Tools – These robust analysis tools are a subset of the well-known LIBRA 
Toolbox, developed by Mia Hubert's research group at the Katholieke Universiteit 
Leuven (www.kuleuven.be). These tools are used to extend PCA, PCR, and PLS 
functionality to include robust analysis options. See the algorithm options on these 
functions for more information. Also, the individual LIBRA functions can be used 
directly. For more information on the robust functions, type: 

 helpwin robust\LIBRA_PLStoolb  
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Graphical User Interface 
Version 4.0 introduces some major changes to the Browse, Analysis, and DataSet Editor 
GUIs. These three GUIs now form the primary environment to analyze and manipulate 
data and models in PLS_Toolbox. PlotGUI has also been significantly enhanced to allow 
more plot manipulation, data selection, and data and plot exporting options. In addition, 
we are introducing two new GUI tools, FigBrowser and TrendTool. 

1. Browse - The PLS_Toolbox Workspace browser has become a full-featured GUI to 
allow users to import, modify, and analyze data. The standard DataSet Editor import 
functions are available in this GUI's menus. In addition, double-clicking data items 
allows editing of those items. Some other highlights of this new interface include: 
• “Drag and drop” of data. Data can be operated on by dragging them to a variety of 

other objects including: 
 Other data, to augment two or more DataSet Objects 
 Models, to apply model to data 
 An Analysis Shortcut in the browser window, to start the specific analysis 

method and pre-load the data for analysis 
 Other PLS_Toolbox windows, to load the data into the specified Analysis, 

PlotGUI, or DataSet Editor window (if permitted).  
• "Drag and drop" of models. Models can be dragged into Analysis windows to 

load them into the Analysis GUI. 
• Right-click functionality. All workspace objects (data, models) can also be 

modified or operated on by right-clicking the object's icon. 
• New menu options to automatically load selected data or models into analysis for 

a specific analysis method. 
2. Analysis – The primary GUI for multivariate data analysis in PLS_Toolbox now 

includes: 
• Color-coded status-boxes (top two boxes in window) indicating current status of 

the Analysis interface. The status boxes also have“right-click” functionality for 
the most commonly needed operations. 

• A new Help Window at bottom of main window offering guidance in working 
with the interface. 

• A shortcut to the PLS_Toolbox Workspace browser by clicking on the EVRI 
Logo button (see Browse for more information). 

• A new OptionsGUI for modifying options for almost all Analysis methods. This 
allows access to a variety of powerful options including: 

 Robust option selection of PCA, PCR, and PLS. 
 MCR options. 

• New Methods added to the Analysis menu: 
 MPCA – Multiway Principal Components Analysis.  
 MLR – Multiple Linear Regression.  

• Preprocess/Custom options (for both X and Y blocks) allowing the side-by-side 
viewing of the effect of selected methods on the data.  

• Better linking of selections in the data, preprocessed data, scores, and loadings 
plot windows. Selections in scores or loadings plots are reflected in original data 
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plots (however, the reverse is not true). Selections in data and preprocessed data 
plots are reflected between each.  

• Improvements in delimited text file importer. The standard text-file importer 
(xclreadr from the command line) now attempts an intelligent parsing of generic 
text files to try to locate labels and extra data, and places these items into a 
DataSet Object for your use.   

• Improved model status content. The model status window now reflects RMSEC, 
RMSECV, and RMSEP information, when available.  

• A new demo for the Analysis GUI. A step-by-step demonstration of how to use 
the Analysis interface for PCA analysis is accessible by typing 
analysis_pcademo. 

• Drill-down functionality in Q and T Contribution plots. Most standard analysis 
methods allow tracking from Q and T contribution plots back to the original data 
by clicking on a given variable. MPCA allows drill-down from "summary" 
contribution plots to the full (variable vs. time) contribution data. 

• The ability of the Analysis GUI to recognize when you have re-loaded the data 
used to calibrate a model, allowing you to modify the model (when the model 
type and settings permit - some model types do not permit this feature). 

3. DataSet Editor – The editor used to import, create, modify and edit DataSet Objects 
now includes: 
• Exporting to CSV. DataSet Objects can now be exported to a standard Comma 

Separated Values format which is readable by Microsoft Excel and other 
programs. 

• Direct editing of Label fields. Labels, classes, axis scales, and the "include" field 
can all be quickly edited by selecting the appropriate "mode" (rows, columns, 
etc.), clicking on the given label header button, and then selecting the Edit/Edit 
field menu (or by right-clicking the label heading and selecting Edit field). 

• Quick bulk exclusion or inclusion of a range of samples or variables using the 
Bulk Include Change menu option. 

• Improved copy and paste functionality for label fields. Copying and pasting 
between the different label fields (Label, Axis Scale, Class) is greatly enhanced. 
Pasting labels into the Class field, for example, now automatically translates text 
labels into the numerical codes required by the Class field, and the Label field 
accepts several standard text formats copied from other programs. 

4. PlotGUI – The general interface used by most of the GUI functions in PLS_Toolbox 
for plotting of data and results now includes: 
• Menu Additions: 

 File  
• Export figure to MS PowerPoint and Export Figure to MS Word. 

Provides an easy way to export a plot; similar to the MATLAB figure 
export function. 
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 Edit 
• Copy Figure and Copy Plotted Data. Sends image of figure (Copy 

Figure) or numeric data plotted in figure (Copy Plotted Data) to your 
system clipboard. 

• Select Class. All samples or variables of a given class (or classes) can be 
easily selected from a list of classes. 

 View 
• Labels. Individual labels can now be dragged and dropped to adjust 

position.  
• Classes/Outline Class Groups Draws smallest-region borders around 

each group of samples in a class. 
• Classes/Labels now allows access to multiple class sets. 
• Declutter Labels. Additional levels of decluttering are now available 

along with improved logic. "Decluttered" notice now appears on figure 
when decluttering is in use (Right-click this notice to hide or change 
options). 

• Subplots. Multiple axes (subplots) are now supported. The contents of 
each subplot can be individually selected by clicking on the subplot, then 
selecting the desired data from the plot controls. Note that some settings 
are used for all subplots. 

• Appearance: Improved support for date stamp labels. Date stamp axis scales are 
automatically recognized and plotted with best-fit labels. Click "Plot" after 
zooming to readjust labels. 

• Keyboard shortcuts for View menu items.  
• Better support for Data Set Objects with label problems (none or duplicates). 
• Command-line support for color-coding scatter plots using either external data or 

a given column/row of the plotted data. 
5. Trendtool – A new graphical analysis tool which permits the user to use right-click 

to mark a variable of interest and view how that variable changes in the "other" 
dimension of a Data Set Object. Subtraction of reference points or linear baselines, as 
well as integration of multiple adjacent variables, are also supported by right-clicking 
a previously-set marker. This tool can be accessed from the command line by typing: 
trendtool(data)  where data is the DataSet Object to analyze. 

6. FigBrowser - This new GUI is initially available on Analysis and PLS_Workspace 
browser windows but, when selected, is automatically available on all figures. It 
allows quick navigation between figures, either from thumbnail images of the figures 
or from a pull-down list in the FigBrowser menu.  

7. Genalg – The genetic algorithm variable selection tool GUI. Improved preprocessing 
support includes viewing of preprocessed data and "pre-application" of preprocessing 
(allows faster analysis). 
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Complete List of New Functions 
This release of PLS_Toolbox also includes the following new command-line functions: 

1. New importers, exporters, and data viewing tools     
encodexml     - Converts standard data types into XML-encoded text. 
idateticks    - Converts axis labels into intelligent date ticks. 
mtfreadr      - Reader for AdventaCT Multi-Trace Format files. 
parsemixed    - Parses numerical and text data into a DataSet Object. 
querydb       - Uses ODBC/ADO or JDBC to execute SQL queries. 
trendtool     - Univariate trend analysis tool. 
writecsv      - Exports a DataSet object to a comma-separated values 

(CSV) file. 
 
2. New analysis functions and associated tools 
ipls          - Interval PLS variable selection. 
matchvars     - Aligns variables of a dataset to allow prediction with 

a model. 
mlr           - Multiple Linear Regression for multivariate Y. 
mlrengine     - Multiple Linear Regression computational engine. 
modelselector - Creates or applies a model selector model. 
 

3. New calculation tools  
lsq2topb      - Fits a polynomial to the top/(bottom) of data. 
med2top       - Fits a constant to top/(bottom) of data. 
varcapy       - Calculate percent y-block variance captured by a PLS 

regression model. 
vip           - Calculate Variable Importance in Projection from 

regression model. 
 

4. Figure and Workspace Management Aids 
clean         - Clears and closes everything in the workspace. 
exportfigure  - Automatically exports figures to an external program. 
figbrowser    - Browser with icons of all Matlab figures. 
keep          - Clears all except named variables in workspace. 
 
5. User Customization 
browse_shortcuts - Defines shortcuts available on the EVRI Workspace 

Browser. 
editds_importmethods - List of user-defined import methods for DataSet 

Editor.  
editds_userimport - Example user-defined importer for editds. 
optionsgui        - Creates options gui for specified function.  
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16. Advanced Software Information 
MATLAB provides several different data types for managing and working with data. 
Along with all of the typical numeric and character data types, MATLAB also supports 
two higher order data types: structures and cell arrays. MATLAB also allows, through the 
use of classes, the creation of custom data types. In this chapter, you will see how 
PLS_Toolbox implements these data types to more effectively manage data.  

 

The DataSet Object 
A typical data set contains more than just a simple matrix or n-way array; the data set 
may also include labels for samples and variables, axes to plot the samples and variables 
against, and a host of other information such as class membership, authorship 
information, etc. When this information is entered in MATLAB, it often becomes a set of 
individual variables of different classes, such as a double array for the main data, 
character arrays or cell arrays containing character strings for the labels, and/or Boolean 
logicals to indicate which samples or variables are to be included in the analysis. The 
MATLAB workspace can quickly become cluttered with many different variables 
associated with the full data set.  

A cluttered workspace can be an inconvenience, but real problems often occur when parts 
of the data set are deleted, or when parts are edited in a way that makes them inconsistent 
with other parts. An example would be if samples were deleted from a data matrix 
without deleting their corresponding sample labels. This can lead to problems further 
down the data analysis chain. 

Overview of the DataSet Object 

The DataSet Object (DSO) was created to address the problem of managing data in 
MATLAB. When added to a MATLAB installation, the DSO creates a new class of 
objects called dataset. DSOs are used to “glue” the individual parts of a data set 
together. This allows complete data sets to be described by single variables in the 
MATLAB workspace. But perhaps more importantly, DSOs have a number of features 
that assure that data are consistent and traceable. These features include: 

• Data consistency: Fields in DSOs are not allowed to be inconsistent. For 
example, it is not possible to create a DSO where the number of labels for 
samples does not match the number of samples, or where the axis scale for 
variables does not match the number of variables. 

• Soft deletes: The DSO contains information (in the include field) that can be 
used to exclude data from an analysis without deleting the excluded data. 
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Thus, a soft delete can be performed that excludes data from a particular 
analysis while still retaining the entire original data record. 

• Data history: All additions and modifications to the DSO are stored in the 
.history field. This field provides a traceable record that can be used to 
reconstruct a DSO from the original data sources. 

• Data description: Text describing the data set is stored in the  .description 
field, and is easily viewed. 

• Userdata: The userdata field of the DSO can be used to store any user-
supplied meta-data associated with the DSO. This data can be extracted by 
user-defined routines. This feature makes the DSO easily extensible. 

• Date stamps, authorship: The DSO includes creation (date) and 
modification (moddate) dates, author information (author), and the name of 
the data set (name). 

• Overloading: Because a DSO is its own class of variable in the MATLAB 
workspace, existing functions can be overloaded with new functions which 
work on DSOs in a sensible way. For instance, the size function is 
overloaded for a DSO to give the size of the data matrix contained in the 
DSO. 

All of these features make managing data in MATLAB easier than ever before. 

DataSet Object Tour 

Perhaps the best way to understand how DSOs work is to examine a couple of them. 
Several data sets are included with PLS_Toolbox, and all of them are in the form of 
DSOs. We will start with the smallest one, the Wine data set. Clear the MATLAB 
workspace (save anything important first!) and at the command line type: 

» load wine 
» whos 
  Name       Size                   Bytes  Class 
 
  wine      10x5                     6050  dataset object 
 
Grand total is 920 elements using 6050 bytes 

We have now loaded the Wine data set. When the ‘whos’ command is used, we see that 
there is a single variable in the workspace, wine, of Class dataset object, with a data 
field that is 10 by 5. We can look at the contents of wine by typing: 
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» wine 
  
wine =  
       name: Wine 
       type: data 
     author: B.M. Wise 
       date: 14-May-2001 13:47:54 
    moddate: 06-Jun-2001 10:27:24 
       data: 10x5 [double] 
      label: {2x1} [array (char)] 
               Mode 1  [Country: 10x6]  
               Mode 2  [Variable: 5x6]  
  axisscale: {2x1} [vector (real)] 
               Mode 1  [: ]  
               Mode 2  [: ]  
      title: {2x1} [vector (char)] 
               Mode 1  [: 'Country']   
               Mode 2  [: 'Variable']  
class: {2x1} [vector (integer)] 
               Mode 1  [: ]  
               Mode 2  [: ]  
    include: {2x1} [vector (integer)] 
               Mode 1  [: 1x10]  
               Mode 2  [: 1x5]   
description: Wine, beer, and liquor consumption (gal/yr), life 
             life expectancy (years), and heart disease rate   
             (cases/100,000/yr) for 10 countries.             
    history: {1x1 cell} [array (char)] 
   userdata:  

From this we see that the name of the data is Wine and that the type is “data.” Other types 
are also possible, such as “image” and “batch.” The author is listed, followed by the 
creation date and last-modified date. The next field, data, contains the actual data table. 
These data, or the data from any DSO field, can be extracted from the DSO just as they 
would be from a conventional structure array (type help struct or refer to the 
Examining a Structure Array section of Chapter 2 for help) using DSOname.fieldname 
syntax. For instance: 
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» wine.data 
 
ans = 
 
    2.5000   63.5000   40.1000   78.0000   61.1000 
    0.9000   58.0000   25.1000   78.0000   94.1000 
    1.7000   46.0000   65.0000   78.0000  106.4000 
    1.2000   15.7000  102.1000   78.0000  173.0000 
    1.5000   12.2000  100.0000   77.0000  199.7000 
    2.0000    8.9000   87.8000   76.0000  176.0000 
    3.8000    2.7000   17.1000   69.0000  373.6000 
    1.0000    1.7000  140.0000   73.0000  283.7000 
    2.1000    1.0000   55.0000   79.0000   34.7000 
    0.8000    0.2000   50.4000   73.0000   36.4000 

The labels can be extracted in a similar manner: 

» wine.label 
 
ans = 
 
  [10x6] char 
  [ 5x6] char 

Note that ans is a cell array, i.e., the labels for each mode of the array are stored in a cell 
that is indexed to that mode. Thus, the labels for mode 1, the data set rows, can be 
extracted with: 

» wine.label{1} 
 
ans = 
 
France 
Italy  
Switz  
Austra 
Brit   
U.S.A. 
Russia 
Czech  
Japan  
Mexico 

Note that curly brackets, {}, are used to index into cell arrays (type help cell for more 
information on cell arrays). In a similar way the labels for mode 2, the data set columns, 
can be extracted by executing: 
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» wine.label{2} 
 
ans = 
 
Liquor 
Wine   
Beer   
LifeEx 
HeartD 

Other fields in the DSO include .axisscale (e.g., time or wavelength scale), .title 
(titles for the axes), and .class (e.g., class variables for samples). Note that a typical 
data set will not have all of the available fields filled. The Wine data set does not have 
axis scales, for instance, nor class variables.  

DSOs also allow for multiple sets of many of these fields; for instance, you may store 
more than one set of labels for a particular mode. Most GUI tools including Analysis, 
PlotGUI and the DataSet Editor support multiple sets but there are some rare situations 
where their use has not yet been fully implemented. GUIs allow limited support of 
multiple sets; axis scales and titles are not yet completely supported in the main Analysis 
GUI. 

The user is encouraged to explore more of the DSOs included with PLS_Toolbox. For an 
example with axis scales, please see spec1 in the nir_data.mat file. For an example 
with class variables, please see arch in the arch.mat file. 

Creating DataSet Objects 

There are several ways to create a DSO. The most basic way assumes that you are 
starting with many of the pieces already in your MATLAB workspace. As an example, 
let’s create a small data set entirely from scratch, consisting of a small data table and the 
labels for samples and variables: 

» data = [41 73 205 
38 71 188 
25 74 175 
48 70 212 
56 69 145] 
 
data = 
 
    41    73   205 
    38    71   188 
    25    74   175 
    48    70   212 
    56    69   145 
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» vars = {'Age','Height','Weight'} 
 
vars =  
 
    'Age'    'Height'    'Weight' 
 
» names = {'Jim','Biff','Bob','Al','Scooter'} 
 
names =  
 
    'Jim'    'Biff'    'Bob'    'Al'    'Scooter' 

Note that the easy way to create labels is to put them in cell arrays by using the curly 
brackets, {}. (This is easier than creating character arrays where all the rows have to be 
the same length.) We can form a DSO we’ll call guydata using the dataset command 
and the variable data as follows: 

» guydata = dataset(data) 
  
guydata =  
       name: data 
       type: data 
     author:  
       date: 05-Nov-2002 10:57:47 
    moddate: 05-Nov-2002 10:57:47 
       data: 5x3 [double] 
      label: {2x1} [array (char)] 
               Mode 1  [: ]  
               Mode 2  [: ]  
  axisscale: {2x1} [vector (real)] 
               Mode 1  [: ]  
               Mode 2  [: ]  
      title: {2x1} [vector (char)] 
               Mode 1  [: ]  
               Mode 2  [: ]  
      class: {2x1} [vector (integer)] 
               Mode 1  [: ]  
               Mode 2  [: ]  
    include: {2x1} [vector (integer)] 
               Mode 1  [: 1x5]  
               Mode 2  [: 1x3]  
description: 
    history: {1x1 cell} [array (char)] 
   userdata:  

The DSO guydata now contains the 5x3 data table in the guydata.data field. The labels 
can be added into the structure as follows: 
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» guydata.label{1} = names; 
» guydata.label{2} = vars; 

What if we inadvertently tried to put the sample labels, which belong in mode 1 (data set 
rows), into the mode 2 (data set columns) .label field? 

» guydata.label{2} = names 
??? Error using ==> dataset/subsasgn 
  Number of rows (or cell elements) in input 'label' must 
=size(x.data,vdim) = 3. 

This illustrates an important aspect of the DSO, which is that it will not let you make 
nonsensical assignments. It forces the data and their associated elements to be consistent. 

Further assignments can be made into the DSO, with the following results: 

» guydata.author = 'My name here'; 
» guydata.name = 'Guys in the Office'; 
» guydata.description = {'Some data describing the age, height,'; 
'and weight of some guys in the office.'}; 
 
We can now inspect the contents of guydata as follows: 
  
» guydata  
 
guydata =  
       name: Guys in the Office 
       type: data 
     author: My name here 
       date: 05-Nov-2002 10:57:47 
    moddate: 05-Nov-2002 11:00:00 
       data: 5x3 [double] 
      label: {2x1} [array (char)] 
               Mode 1  [: 5x7]  
               Mode 2  [: 3x6]  
  axisscale: {2x1} [vector (real)] 
               Mode 1  [: ]  
               Mode 2  [: ]  
      title: {2x1} [vector (char)] 
               Mode 1  [: ]  
               Mode 2  [: ]  
      class: {2x1} [vector (integer)] 
               Mode 1  [: ]  
               Mode 2  [: ]  
    include: {2x1} [vector (integer)] 
               Mode 1  [: 1x5]  
               Mode 2  [: 1x3]  
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description: Some data describing the age, height,  
             and weight of some guys in the office. 
    history: {1x1 cell} [array (char)] 
   userdata:  

DSOs can also be created using the DataSet Editor GUI, which may be started by typing 
editds at the command prompt. The individual parts of the data may be loaded into the 
GUI, then saved as a DSO in the workspace by selecting Save from the File menu. 
Finally, there are some functions written into PLS_Toolbox to load data from files 
directly into DSOs. One example is xclreadr, which loads data from Excel spreadsheets 
that have been saved as delimited text. To try this, type: 

» xcldata = xclreadr('xclreadrdata.txt') 
  
xcldata =  
       name: xclreadrdata.txt 
       type: data 
     author: Created by XCLREADR 
       date: 05-Nov-2002 11:01:04 
    moddate: 05-Nov-2002 11:01:04 
       data: 3x3 [double] 
      label: {2x1} [array (char)] 
               Mode 1  [: 3x9]   
               Mode 2  [: 3x11]  
  axisscale: {2x1} [vector (real)] 
               Mode 1  [: ]  
               Mode 2  [: ]  
      title: {2x1} [vector (char)] 
               Mode 1  [: ]  
               Mode 2  [: ]  
      class: {2x1} [vector (integer)] 
               Mode 1  [: ]  
               Mode 2  [: ]  
    include: {2x1} [vector (integer)] 
               Mode 1  [: 1x3]  
               Mode 2  [: 1x3]  
description: Test file for XCLREADR 
    history: {1x1 cell} [array (char)] 
   userdata:  

Here the labels have been stripped off the original file and placed in the proper fields of 
the DSO, along with the data table.  

Summary 

The DataSet Object is a handy way to keep all the pieces of a data set organized. It is 
convenient to move new data into a DSO as soon as it is imported into MATLAB. Pieces, 
such as class identifiers, can then be added to it as the analysis proceeds. Because the 
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DSO keeps track of its own history, the entire story of its construction is contained within 
it. PLS_Toolbox contains several tools for editing and viewing DSOs. See Chapter 2 for 
more information on the DataSet Editor and PlotGUI. For more technical information on 
the structure of DSOs, please see the DataSet Object specification documentation 
(DataObject401.pdf). 

Standard Model Structure 
Introduction 

Many higher-level PLS_Toolbox functions such as PCA and PLS output the results of 
analyses in a standard model format. This format, the Standard Model Structure, contains 
the key results of an analysis, as well as information needed to reproduce those results. 
The Standard Model Structure is typically used by PLS_Toolbox functions to review the 
model calibration or apply it to new data (for example, predicting on unknown data). 
However, the experienced user can access much of the information in the model from the 
command line to perform various tasks. This section describes the standard model 
structure in general and also shows some of these advanced applications.  

Using Structures 

As the name implies, Standard Model Structures are created with a MATLAB variable 
type called a “structure.” In a MATLAB structure, a single variable contains one or more 
named "fields" (consider it like a variable containing other variables). These fields are 
accessed by giving the base variable name (here called "model") followed by a period 
and the name of the field. For example: 

 
model.date 

returns the contents of the date field from the model.  

In the case of Standard Model Structures, the fields which show up are standardized to 
help the user identify useful parts of any model. Some of the fields of the Standard Model 
Structure have self-explanatory contents, such as description strings; other fields contain 
data matrices with varying contents. Additionally, some Standard Model Structure fields 
contain MATLAB cell arrays. A cell array is a container for matrices or strings that can 
be indexed into. When cell arrays are used, they are denoted either by the word "cell" or 
by surrounding the size or content with curly brackets, { }. For more information about 
indexing into cell arrays, see the MATLAB documentation on cells; in general, they are 
indexed using curly brackets giving the indices of the cell to extract,  e.g., mycell{2,3} 

One special field in all Standard Model Structures is the detail field. This field contains 
a separate structure with lower-level details about the model. The contents of this field 
vary between different model types and typically contains important details about the 
model. The contents are accessed by simply addressing first the top-level variable (e.g. 
“model”), then the detail field, then finally the sub-field to extract. For instance, to access 
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the sum squared captured information (ssq table) for a pca model you would use the 
following: 

 
model.detail.ssq 

Although the exact fields present in any model vary depending on the model type, the 
following example, a PCA model, shows many of the general model characteristics. 

 

PCA Example 
 
model =  
       modeltype: 'PCA' 
      datasource: {[1x1 struct]} 
            date: '29-Mar-2004' 
            time: [2004 3 29 8 57 37.4400] 
            info: 'Scores are in cell 1 of the loads field.' 
           loads: {2x1 cell} 
            pred: {[]} 
            tsqs: {2x1 cell} 
    ssqresiduals: {2x1 cell} 
     description: {3x1 cell} 
          detail: [1x1 struct] 
 
model.datasource{1}= 
       name: 'Wine' 
     author: 'B.M. Wise' 
       date: [2001 5 14 13 47 53.9500] 
    moddate: [2001 6 6 10 27 23.5100] 
       size: [10 5] 
 
model.detail= 
             data: {[]} 
              res: {[]} 
              ssq: [5x4 double] 
            rmsec: [] 
           rmsecv: [] 
            means: {[]} 
             stds: {[]} 
           reslim: {[3.1403]} 
           tsqlim: {[10.0327]} 
           reseig: [3x1 double] 
               cv: '' 
            split: [] 
             iter: [] 
           includ: {2x1 cell} 
            label: {2x1 cell} 
        labelname: {2x1 cell} 
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        axisscale: {2x1 cell} 
    axisscalename: {2x1 cell} 
            title: {2x1 cell} 
        titlename: {2x1 cell} 
            class: {2x1 cell} 
        classname: {2x1 cell} 
    preprocessing: {[1x1 struct]} 
          options: [1x1 struct] 
 

Description 

model 
modeltype: Contains a keyword defining the type of model.  
 
datasource: Contains information about the data used for the model, but does 
not contain original data. datasource basically contains a subset of the fields of 
the original DataSet Object. If more than one block of data is used for a model 
(e.g., PLS models require two blocks), datasource will be size 1xj, where j is 
the number of blocks used for the model (1x2 in the case of PLS). 

 
date: Contains a string description of the date on which the model was 
calculated. 
 
time: Contains a time-stamp vector including, in order, the year, month, day, 
hour, minute, and second at which the model was created. Useful for 
distinguishing between different models, as no two models can be created with 
the same time-stamp. 
 
loads: Contains factors recovered for the data. In the case of PCA or PLS 
models, the rows are the "scores" and "loadings" of the data. For PARAFAC, it is 
the loadings of each mode. The size of the loads field will be dxj, where d is the 
number of modes (dimensions) and j is the number of blocks of data used by the 
model (Table 1). PCA models will be 2x1 (two modes, one block), PLS models 
will usually be 2x2 (two modes, two blocks), PARAFAC will often be dx1 where 
d is at least 3. Other model types follow this same pattern.  
 

Table 16-1. Loads field contents. 
Model Type Field loads contains: 
PCA, MCR { X-block Scores 

   X-block Loadings } 
PLS, PCR { X-block Scores Y-block Scores 

   X-block Loadings  Y-block Loadings } 
PARAFAC { X-block Loadings (mode 1) 

   X-block Loadings (mode 2) 
   X-block Loadings (mode 3)  
   …                                           } 
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The contents of each cell will generally be an mxk array in which m is the size of 
the given block for the given mode (e.g., for loads{1,1}, m would be equal to the 
size of the first mode of the X-block) and k is the number of components or 
factors included in the model. This format may be different for different model 
types. 
 
Examples of indexing into the loads field: 
 
For a PCA model, a plot of the scores for all principal components can be made 
using: 
 
    plot(model.loads{1}); 
 
To plot the scores for only the first principal component, type: 
 
    plot(model.loads{1}(:,1));  
 
Similarly, a plot of the loadings for the first principal component can be made 
using: 
 
     plot(model.loads{2}(:,1); 
 
You can also use the model to export data so that they can be used in other 
programs. The following could be used to export an XY text-formatted file of the 
loadings of the first principal component: 
 
    xy=[ [1:size(model.loads{2},1)]'  model.loads{2}(:,1) ]; 
    save xy.prn xy –ascii 
 
If the axisscale field for this data contains a useful axis to plot against, the XY 
data can be created using 
 
 xy=[model.detail.axisscale{2}(model.detail.includ{2})'  ... 

model.loads{2}(:,1)]; 
 
Similarly, the axisscale could be used in the plot commands given above. 
 The goal of PCA is to recreate a data set from its loadings and scores. When the 
proper number of principal components is used one can reproduce the original 
data set within the noise level. The reconstructed data is calculated as follows: 
 
 data_reconstructed = model.loads{1}*model.loads{2}'; 
 
It is also possible to reconstruct the data with fewer factors. The general command 
for n principal components is: 
 

 model.loads{1}(:,1:n) * model.loads{2}(:,1:n)'; 
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tsqs: Contains Hotelling's T2 values. The T2 values are a distance measure of 
the scores or loadings with respect to their respective origins. The tsqs field is a 
cell equal in size and similar in definition to the loads field. The field will be size 
dxj, where d is the number of modes (dimensions) and j is the number of blocks 
of data used by the model. Row 1 contains the mode 1 T2 values (samples), row 2 
contains the T2 values for mode 2 (variables), etc., while column 1 contains T2 
values for the X-block and column 2 contains T2 values for the Y-block (if any 
was used for the given model type). 
 
A relatively large value in tsqs{1,1} indicates a sample that has relatively large 
influence and loading on the PCA model. Similarly, large values in tsqs{2,1} 
indicate variables with significant influence and loading on the model. These are 
often used with statistical limits given in the details field and discussed below. 

When a model is applied to new data, the output prediction structure will contain 
the T2 values for the predictions rather than the calibration data. 

 
ssqresiduals: Contains the sum-of-squares (SSQ) differences between the 
original data and the reconstructed data. The field will be size dxj, where d is the 
number of modes (dimensions) and j is the number of blocks of data used by the 
model. The first row of the cell contains sum-of-squares differences for each 
sample (indicating samples which have large out-of-model residuals), while the 
second row contains sum-of-squares differences for each variable (indicating 
variables which have large out-of-model residuals). Again, each block is 
represented by a column, so the X-block sample sum-of-squares residuals can be 
extracted using: 
 
 model.ssqresiduals{1,1} 

When a model is applied to new data, the output prediction structure will contain 
the SSQ residuals for the predictions rather than the calibration data. 

model.detail 
 
data: Contains the data used to calculate the model. In order to save memory, 
many methods do not save the primary (X) block in the first cell. See the options 
for a given analysis method to learn more about storing the X-block data in the 
model (see, for example, the blockdetails option for PCA and PLS). Y-block 
data (i.e., model.detail.data{2} ) is usually stored, when available. 
 
res: Contains the residuals calculated as the difference between the 
reconstructed data  and the original data. As with the detail.data field, the X-
block residuals are not usually stored, due to excessive size. As such, this field 
may be empty. If using a two-block method such as PLS, the second cell of 
model.detail.res will usually contain the prediction residuals. 
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rmsec and rmsecv: Contain any root-mean-square error of calibration and 
cross-validation (respectively) that was calculated for the model. These are 
vectors equal in length to the maximum number of factors requested for a given 
cross-validation calculation. A value of NaN will be used for any value which was 
not calculated. 
 
ssq: Contains the eigenvalues or other variance-captured information for a 
model. For PCA models–, the first column is the PC number, the second column 
contains the eigenvectors, the third column contains the eigenvalues scaled to a 
sum of 100, and the last column contains the cumulative eigenvalues. As such, the 
eigenvalues can be extracted using: 
 

model.detail.ssq(:,3) 
 

For PLS models, the first column is the Latent Variable number, followed by the 
variance captured for the X-block, the cumulative variance captured for the X-
block, the variance captured for the Y-block, and the cumulative variance 
captured for the Y-block.  
 
Users should be advised that other model types use this field in different ways. 
For more information contact Eigenvector Research at 
helpdesk@eigenvector.com.  
 
reslim: Contains the 95% confidence limit for the block 1 sample Q residuals; 
i.e., for the values in model.ssqresiduals{1}. For PCA, this value is calculated 
using : 
 

residuallimit(model,.95)  
 

For some multiway model types this field may contain a structure with additional 
information. For help on this topic, contact Eigenvector Research at 
helpdesk@eigenvector.com. 
 
tsqlim: A cell containing the 95% confidence limit for the block 1 sample T2 
values in  model.tsqs. For PCA, this value is calculated using 
 

[n_samples,n_pcs]=size(model.loads{1}); 
tsqlim(n_samples,n_pcs,.95);   
 

For some multiway model types, this field may contain a structure with additional 
information. For help on this topic, contact Eigenvector Research at 
helpdesk@eigenvector.com. 
 
reseig: Contains the residual eigenvalues for PCA models only.  
 
cv, split, iter: Contain information about the settings used when cross-
validating the model, including: 
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               cv: the encoded cross-validation method  
            split: the total number of splits (test groups) 
             iter: the number of iterations (for random mode only) 

 
includ, label, labelname, axisscale, axisscalename, title, 
titlename, class, classname:  Contain information from DataSet Object 
fields. If the original data used to calculate the model were stored in a DataSet 
Object, certain fields from the DataSet Object are extracted and stored in the 
model. Each of these fields is extracted for each mode and each block such that 
model.detail.label{1,2} returns the mode 1 labels for block 2 (Y-block), and 
model.detail.class{2,1} returns the mode 2 classes for block 1 (X-block). For 
more information on these fields, see the DataSet Object section at the beginning 
of this chapter.  
 
Note that although DataSet Objects use the second index of many of these fields 
to store multiple "sets," the model structures indicate the block number with the 
second index, and the set number with the third index. 
 
preprocessing: Contains a cell of preprocessing structures. The preprocessing 
structures are used with the function preprocess to process the data for the 
model. There is one structure in the cell for each block required by the model and 
each structure may have zero, one or multiple records, with each record 
representing one preprocessing method applied to the data. Thus, the X-block 
preprocessing is stored in model.detail.preprocessing{1}. 
 
options: Contains the options given as input to the modeling function. 

Summary 

Similar to a DataSet Object, the Standard Model Structure organizes results of an analysis 
into a logical hierarchy. From this structure, a user can both explore results and generate 
predictions. As you become more familiar with its organization, you will see how 
convenient it is to access and manipulate model information using the Standard Model 
Structure. 

User-Defined Preprocessing 
Each preprocessing method available in the preprocess function is defined using a 
preprocessing structure. The standard methods are defined in the preprocatalog file, 
and additional user-defined methods can be defined in the preprouser file. The methods 
defined in these two files are available to all functions making use of the preprocess 
function. See the preprouser file for examples of defining and adding methods to the 
available methods catalog. The fields in a preprocessing structure include: 
 
description - textual description of the particular method. 
calibrate - cell containing the line(s) to execute during a calibration operation. 
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apply - cell containing the line(s) to execute during an apply operation. 
undo - cell containing the line(s) to execute during an undo operation. 
out - cell used to hold calibration-phase results for use in apply or undo. 
settingsgui - function name to execute when the "Settings" button is pressed in the 

GUI. 
settingsonadd - Boolean: 1 = automatically bring up settings GUI when method is 

"added". 
usesdataset - Boolean: indicates if this method should be passed a DataSet Object 

(1) or a raw matrix (0) 
caloutputs - integer: number of expected items in field out after calibration has 

been performed. 
keyword - text string which users can pass to preprocess to obtain this structure. 
userdata - user-defined variable often used to store method options. 

Detailed Field Descriptions 

description: Contains a short (1-2 word) description of the method. The value 
will be displayed in the GUI and can also be used as a string keyword (see also 
keyword) to refer to this method. For example: 

 
pp.description = 'Mean Center'; 

 
calibrate, apply, undo: Contain a single cell of one or more command strings 
to be executed by preprocess when performing calibration, apply or undo 
operations. Calibrate actions are done on original calibration data, whereas 
apply is done on new data. The undo action is used to remove preprocessing from 
previously preprocessed data, although it may be undefined for certain methods. 
If this is the case, the undo string should be an empty cell.  

The command strings should be valid MATLAB commands. Each command will 
be executed inside the preprocess environment in which the following variables 
are available: 

data: The actual data on which to operate and in which to return modified 
results. If the field usesdataset is 1 (one) then data will be a DataSet 
Object. Otherwise, data will be a standard MATLAB variable which has 
been extracted from the DataSet Object. In the latter case, the extracted 
data will not contain any excluded columns from the original DataSet 
Object. In addition, in calibrate mode rows excluded in the original 
DataSet Object will not be passed. All rows, excluded or not, are passed in 
apply and undo modes.  

 If writing a DataSet Object-enabled preprocessing function, it is expected 
that the function will calibrate using only included rows but apply and 
undo the preprocessing to all rows. 
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out: Contents of the preprocessing structure field out. Any changes will be 
stored in the preprocessing structure for use in subsequent apply and undo 
commands. 

userdata: Contents of the preprocessing structure field userdata. Any 
changes will be stored in the preprocessing structure for later retrieval.  

Read-only variables: Do not change the value of these variables. 

include: Contents of the original DataSet Object's include field.  

otherdata: Cell array of additional inputs to preprocess which follow the 
data. For example, these inputs are used by PLS_Toolbox regression 
functions to pass the y-block for use in methods which require that 
information. 

originaldata: Original DataSet Object unmodified by any preprocessing 
steps. For example, originaldata can be used to retrieve axis scale or 
class information even when usesdataset is 0 (zero) and, thus, data is 
the extracted data. 

In order to assure that all samples (rows) in the data have been appropriately 
preprocessed, an apply command is automatically performed following a 
calibrate call. Note that excluded variables are replaced with NaN.  

Examples: 
The following calibrate field performs mean-centering on data, 
returning both the mean-centered data as well as the mean values which 
are stored in out{1}: 

pp.calibrate   = { '[data,out{1}] = mncn(data);' }; 

The following apply and undo fields use the scale and rescale 
functions to apply and undo the previously determined mean values 
(stored by the calibrate operation in out{1}) with new data: 

pp.apply       = { 'data = scale(data,out{1});' }; 
pp.undo        = { 'data = rescale(data,out{1});' }; 

 
out: Contains non-data outputs from calibrations. This output is usually 
information derived from the calibration data which is required to apply the 
preprocessing to new data. This field will be updated following a calibrate call, 
and the entire preprocessing structure will be output. For example, when 
autoscaling, the mean and standard deviation of all columns are stored as two 
entries in out{1} and out{2}. See the related field caloutputs. Usually, this 
field is empty in the default, uncalibrated structure. 
 



398 

settingsgui: Contains the name of a graphical user interface (GUI) function 
which allows the user to set options for this method. The function is expected to 
take as its only input a standard preprocessing structure, from which it should take 
the current settings and output the same preprocessing structure modified to meet 
the user's specifications. Typically, these changes are made to the userdata field, 
then the commands in the calibrate, apply and undo fields will use those 
settings. 

The design of GUIs for selection of options is beyond the scope of this document 
and the user is directed to autoset.m and savgolset.m, both of which use GUIs 
to modify the userdata field of a preprocessing structure. Example: 

pp.settingsgui   = 'autoset'; 
 
settingsonadd: Contains a Boolean (1=true, 0=false) value indicating if, when 
the user selects and adds the method in the GUI, the method's settingsgui 
should be automatically invoked. If a method usually requires the user to make 
some selection of options, settingsonadd=1 will guarantee that the user has had 
an opportunity to modify the options or at least choose the default settings. 

Example: 
pp.settingsonadd   = 1; 

 
usesdataset: Contains a Boolean (1=true, 0=false) value indicating if the 
method is capable of handling DataSet Objects or can only handle standard 
MATLAB data types (double, uint8, etc). 

1 = function can handle DataSet Objects; preprocess will pass entire DataSet 
Object. It is the responsibility of the function(s) called by the method to 
appropriately handle the include field. 

0 = function needs standard MATLAB data type; preprocess will extract 
data from the DataSet Object prior to calling this method and reinsert 
preprocessed data after the method. Although excluded columns are 
never extracted and excluded rows are not extracted when performing 
calibration operations, excluded rows are passed when performing 
apply and undo operations. 

Example: 
pp.usesdataset   = 0; 

 
caloutputs: Contains the number of values expected in field out if a calibrate 
operation has been performed, for functions which require a calibrate operation 
prior to an apply or undo. For example, in the case of mean centering, the mean 
values stored in the field out are required to apply or undo the operation. Initially, 
out is an empty cell ({}) but following the calibration, it becomes a single-item 
cell (length of one). By examining this length, preprocess can determine if a 



399 

preprocessing structure contains calibration information. The caloutputs field, 
when greater than zero, indicates to preprocess that it should test the out field 
prior to attempting an apply or undo. 

Example: 
In the case of mean-centering, the length of out should be 1 (one) after 
calibration: 

pp.caloutputs    = 1; 
 

keyword: Contains a string which can be used to retrieve the default 
preprocessing structure for this method. When retrieving a structure by keyword, 
preprocess ignores any spaces and is case-insensitive. The keyword (or even the 
description string) can be used in place of any preprocessing structure in 
calibrate and default calls to preprocess: 

pp = preprocess('default','meancenter'); 

Example: 
pp.keyword     = 'Mean Center'; 

 
userdata: A user-defined field. This field is often used to hold options for the 
particular method. This field can also be updated following a calibrate 
operation. 

Example: 
In savgol several variables are defined with various method options, then 
they are assembled into userdata: 

pp.userdata    = [windowsize order derivative]; 

Examples 

The preprocessing structure used for sample normalization is shown below. The 
calibrate and apply commands are identical and there is no information that is stored 
during the calibration phase; thus, caloutputs is 0. The order of the normalization is set 
in userdata and is used in both calibrate and apply steps. 
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pp.description = 'Normalize'; 
pp.calibrate   = {'data = normaliz(data,0,userdata(1));'}; 
pp.apply       = {'data = normaliz(data,0,userdata(1));'}; 
pp.undo        = {}; 
pp.out         = {}; 
pp.settingsgui   = 'normset'; 
pp.settingsonadd = 0; 
pp.usesdataset   = 0; 
pp.caloutputs    = 0; 
pp.keyword       = 'Normalize'; 
pp.userdata      = 2; 

The preprocessing structure used for Savitsky-Golay smoothing and derivatives is shown 
below. In many ways, this structure is similar to the sample normalization structure, 
except that savgol takes a DataSet Object as input and, thus, usesdataset is set to 1. 
Also note that because of the various settings required by savgol, this method makes use 
of the settingsonadd feature to bring up the settings GUI as soon as the method is 
added. 
 

pp.description  = 'SG Smooth/Derivative'; 
pp.calibrate  = 

{'data=savgol(data,userdata(1),userdata(2),userdata(3));'}; 

pp.apply      = 
{'data=savgol(data,userdata(1),userdata(2),userdata(3));'}; 

pp.undo       = {}; 
pp.out        = {}; 
pp.settingsgui   = 'savgolset'; 
pp.settingsonadd = 1; 
pp.usesdataset    = 1; 
pp.caloutputs     = 0; 
pp.keyword        = 'sg'; 
pp.userdata       = [ 15 2 0 ]; 

The following example invokes multiplicative scatter correction (MSC) using the mean 
of the calibration data as the target spectrum. The calibrate cell here contains two 
separate operations; the first calculates the mean spectrum and the second performs the 
MSC. The third input to the MSC function is a flag indicating whether an offset should 
also be removed. This flag is stored in the userdata field so that the settingsgui 
(mscorrset) can change the value easily. Note that there is no undo defined for this 
function. 
 

pp.description   = 'MSC (mean)'; 
pp.calibrate   = { 'out{1}=mean(data); 

data=mscorr(data,out{1},userdata);' }; 
pp.apply         = { 'data = mscorr(data,out{1});' }; 
pp.undo          = {}; 
pp.out           = {}; 
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pp.settingsgui   = 'mscorrset'; 
pp.settingsonadd   = 0; 
pp.usesdataset     = 0; 
pp.caloutputs      = 1; 
pp.keyword         = 'MSC (mean)'; 
pp.userdata       = 1; 

Summary 

The Preprocessing Structure provides a generic framework within which a user can 
organize and automate preprocessing with PLS_Toolbox. Both MATLAB structure and 
cell data types are used extensively in the Preprocessing Structure. Any custom 
preprocessing you define yourself can be combined with the numerous methods provided 
by PLS_Toolbox in order to meet your analysis needs. 
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