II.4.3. Omówienie wyników otrzymanych za pomocą spektroskopii absorpcyjnej.

Na podstawie widm (Rys. II.4.3.1) stwierdzam, że w zakresie niskich stężeń rzędu 1×10^{-7} – 1×10^{-6} mol/dm³ tetrasulfonowana ftalocyjanina glinu występuje w roztworze wodnym w formie monomerowej.

Komentarz [J1]: Times New Roman, 14, pogrubienie, wyjustuj, odstęp 1.0

Komentarz [J2]: Times New Roman, 12, pogrubienie, wyjustuj, odstęp 1.0 Komentarz [J3]: Wstawianie obrazu

Rysunek II.4.3.1 Elektronowe widma absorpcyjne roztworów AlPcTs w H₂O zarejestrowane w funkcji stężenia w temperaturze 293K, przy długości drogi optycznej 2mm.

W celu wyznaczenia stałej dimeryzacji przemiany K w powyższym zakresie stężeń, w którym zakładam brak wyższych agregatów, skorzystałem z równania:

 $K = [d]/[m]^2$

gdzie [d] i [m] stanowią stężenia substancji w formie dimeru i monomeru, stężenie całkowite [c_t]:

$$c_t = 2[d] + [m]$$
 (4)

i
$$[m] = \frac{J \cdot c_t}{J+2}; \quad J = \frac{A_m}{A_d}$$
 (5), (6)

Absorbancję (A) można ostatecznie opisać równaniem:

$$A = (\varepsilon_m[m] + 2\varepsilon_d[d])l \tag{7}$$

Komentarz [J4]: Wyrównaj tekst do prawej

Komentarz [J5]: Wstawianie równania

(edytor równań)

(3)

67

gdzie l jest długością drogi optycznej, ϵ_m i ϵ_d to molowe współczynniki absorpcji odpowiednio monomeru i dimeru (w dm³/mol x cm).

Po przekształceniu równań (3) – (7) otrzymuję:

$$A = (\varepsilon_m c_t + (\varepsilon_m - \varepsilon_d))[-1 + \sqrt{(1 + 8K_d c_t)}]/4K_d$$
(8)

W celu wyznaczenia wartości stałej dimeryzacji K najpierw wyznaczyłem w oparciu o prawo Lamberta – Beera wartości molowych współczynników absorpcji monomeru i dimeru. Korzystając ze wzoru nr 3 wyznaczyłem wstępną wartość K. Następnie sporządziłem wykresy A/1 (A – absorbancja, 1 – długość drogi optycznej) w funkcji całkowitego stężenia. Ostateczne wartości ε_m , ε_d i K otrzymałem na drodze dopasowania funkcji opisanej równaniem nr 8 dla punktów eksperymentalnych.

Rysunek II.4.3.2 Zależność absorbancji w maksimum w funkcji iloczynu stężenia i długości optycznej na podstawie widm absorpcyjnych roztworów AlPcTs dla: a) formy monomerowej, b) dimeru.

Ouz y mane w y mki u mesenem w uoen $m + 3.7$	Otrzymane wyr	niki umieściłem v	w tabeli II.4.3.A.
---	---------------	-------------------	--------------------

	K	$\epsilon_{\rm m} [{\rm dm}^3/{ m mol} \ { m x} \ { m cm}]$	ε _d [dm ³ /mol x cm]
AlPcTs / H ₂ O	4.95×10^5	2.00×10^5	6.89×10^4
	$\pm 1.09 \mathrm{x} 10^5$	$\pm 9.0 \mathrm{x} 10^{3}$	$\pm 1.07 \mathrm{x} 10^4$

Tabela II.4.3.A *Stała dimeryzacji K i molowe współczynniki absorpcji* ε_m *i* ε_d .

Komentarz [J6]: Wstawianie tabeli