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Cancer

The magnitude of this problem
concerns both the epidemiological
and the diagnostic aspects. In 2023,
5.3% 1,958,310 new cancer cases and
609,820 cancer deaths are projected

6,3% to occur in the United States.

45.2%

6,4%

Causes of deaths
Cardiovascular disease

Incorrect clinical trial results

others
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GOALS

* Demonstrate the usefulness of
Raman spectroscopy, Raman
imaging to identify human colon
cancer.

* lIdentification of these classes of
compounds that can be used as
markers of cancer changes by
Raman spectroscopy and imaging.

 Estimate the sensitivity and
specificity of Raman spectroscopy,
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and thus to estimate the reliability wavenumber o
of spectroscopic method by using
chemometric algorithms. oo W
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Raman spectroscopy and imaging,
femtosecond spectroscopy, AFM
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TISSUES

CELLS

CaCo-2, cancerous

BB-P
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Raman spectroscopy and imaging
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imaging

Raman spectroscopy and

|l. noncancerous tissue
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Raman spectroscopy and imaging

Cluster analysis or clustering is the task of
grouping a set of objects in such a way that
objects in the same group (called a cluster) are
more similar (in some sense) to each other than
to those in other groups (clusters).

It is a main task of exploratory data analysis, and
a common technique for statistical data analysis,
used in many fields, including pattern
recognition, image analysis, information
retrieval, bioinformatics, data compression,
computer graphics and machine learning.
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Raman spectroscopy and imaging

Cluster analysis itself is not one specific
algorithm, but the general task to be
solved.

Clustering can therefore be formulated as
a multi-objective optimization problem.
The appropriate clustering algorithm and
parameter settings depend on the
individual data set and intended use of the
results. Cluster analysis as such is not an
automatic task.
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Cluster analysis
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in cluster analysis a group of objects is split up into a number of more or less
homogeneous subgroups on the basis of an often subjectively chosen measure of
similarity (i.e., chosen subjectively based on its ability to create “interesting” clusters),
such that the similarity between objects within a subgroup is larger than the similarity
between objects belonging to different subgroups

BB-P
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Cluster analysis

8] Do you thing this is good?

o Do you thing this is better?



Adv. Phys. Chem.

Cluster analysis

o Do you thing this is better?

o Homogeneity and separation principles
= Homogeneity: Elements within a cluster are close to each other

m Separation: Elements in different clusters are further apart from
each other
BB-P
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Cluster analysis

Feature —_— Clustering >
- Selection or Algorithm Design
Extraction or Selection
Data Samples
L—/_UJ Results — Clusters
— . . .
Interpretation — Vahdation
Knowledge

BB-P



Adv. Phys. Chem.

Raman spectroscopy and imaging
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«Connectivity models: for
example, hierarchical clustering builds
models based on distance
connectivity.

*Centroid models: for example, the k-
means algorithm represents each
cluster by a single mean vector.
Distribution models: clusters are
modeled using statistical distributions,
such as multivariate normal
distributions used by the expectation-
maximization algorithm.
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*Neural models: the most well known
unsupervised neural network Is the
self-organizing map and these models
can usually be characterized as
similar to one or more of the above
models, and Including subspace
models when neural networks
Implement a form of Principal
Component Analysis or Independent
Component Analysis.
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Density models: for
example, DBSCAN and OPTICS defines clusters
as connected dense regions in the data space.
*Subspace models: in biclustering (also known as
co-clustering or two-mode-clustering), clusters are
modeled with both cluster members and relevant
attributes.

*Group models: some algorithms do not provide a
refined model for their results and just provide the
grouping information.

*Graph-based models: a clique, that is, a subset of
nodes in a graph such that every two nodes in the
subset are connected by an edge can be
considered as a prototypical form of cluster.
Relaxations of the complete connectivity
requirement (a fraction of the edges can be
missing) are known as quasi-cligues, as in the HCS
clustering algorithm.



https://en.wikipedia.org/wiki/Biclustering
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Centroid models: for example,
the k-means algorithm represents
each cluster by a single mean

vector.

*k-means clustering is a method of vector
guantization, originally from signal processing,
that aims to partition n observations into k clusters
iIn which each observation belongs to the
cluster with the nearest mean (cluster centers
or cluster centroid), serving as a prototype of the
cluster. This results in a partitioning of the data
space into Voronoi cells. k-means clustering
minimizes  within-cluster variances (squared
Euclidean distances), but not regular Euclidean
distances, which would be the more difficult
Weber problem: the mean optimizes squared
errors, whereas only the geometric median
minimizes Euclidean distances. For instance,
better Euclidean solutions can be found using k-
medians and k-medoids.
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EXAMPLE

Based on LLMS data base
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«Strict partitioning clustering: each object
belongs to exactly one cluster

«Strict  partitioning  clustering  with
outliers: objects can also belong to no
cluster, In which case they are
considered outliers

Overlapping clustering (also: alternative
clustering, multi-view clustering): objects
may belong to more than one cluster,;
usually involving hard clusters

*Hierarchical clustering: objects that
belong to a child cluster also belong to the
parent cluster

*Subspace clustering: while an overlapping
clustering, within a uniquely defined
subspace, clusters are not expected to
overlap
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.A

single linkage algorithm

complete linkage

A

group average

distance between centroids

definition of distance

d= Ji(fh - p:)3

d=> @—p)
i=1

d= ZIQX - p.ll + |Qy _pyl
i=1
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Manhattan

A Manhattan

d =ZIQ§E_F:| + |'i;-!'3J _pyl
i=1

The manhattan distance is a different way of measuning distance. It is named after the grid shape of streets in Manhattan. If there are two points, (9:1 , yl)
and (2, ), the manhattan distance between the two points is |1 — 3| + [y — 1

This distance can be imagined as the length needed to move between two points in a grid where you can only move up, down, left or right.

BB-P
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Demonstration of the standard algorithm

E: .'E ° o ; ‘\
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1. k initial "means” (in this 2. k clusters are created by 3. The centroid of each of the 4. Steps 2 and 3 are repeated
case k=3) are randomly associating every observation  k clusters becomes the new until convergence has been

generated within the data with the nearest mean. The mean. reached.

domain (shown in color). partitions here represent the

Voronoi diagram generated by
BB-P the means.
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Demonstration of the standard algorithm

® @
(=] o
o 2 o -
o
o a
2 o o | e
(1] o o a8
oo o ]
oo
1. kinitial "means” (in this 2. k clusters are created by 3. The centroid of each of the 4. Steps 2 and 3 are repeated
case k=3) are randomly associating every observation  k clusters becomes the new until convergence has been
generated within the data with the nearest mean. The mean. reached.
domain (shown in color). partitions here represent the

VVoronoi diagram generated by
the means.

K-means algorithm iteratively minimizes the distances between every data point and its
centroid in order to find the most optimal solution for all the data points.

1.k random points of the data set are chosen to be centroids.

2.Distances between every data point and the k centroids are calculated and stored.
3.Based on distance calculates, each point is assigned to the nearest cluster

4.New cluster centroid positions are updated: similar to finding a mean in the point
locations

5.1f the centroid locations changed, the process repeats from step 2, until the calculated
new center stays the same, which signals that the clusters' members and centroids are
now set.

BB-P
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*Hierarchical clustering:
objects that belong to a child
cluster also belong to the
parent cluster
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Hierarchical

clustering:

objects that belong to a child
cluster also belong to the

parent cluster
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*Hierarchical clustering:
objects that belong to a child
cluster also belong to the
parent cluster

191,92, 93,94, 0%, 96, 97, 98, 99,910}
{91’92'9“96‘97-93-?').9]0}

191.96,97}

191,96}

{92, 94,910}

{g2.94.99.910} r : s

{g2.94}

{ {93, 95

HQLT
f 1.'9'-‘ g1 ge aglo ¢ da &

BB-P



Adv. Phys. Chem.

Pseudocode

Hierarchical Clustering (d , n)
1. Form n clusters each with one element
2.  Construct a graph T by assigning one vertex to each cluster
3. while there is more than one cluster
1. Find the two closest clusters C1 and C2
2. Merge C1 and C2 into new cluster C with |C1| +|C2| elements
3. Compute distance from C to all other clusters
4. if they are close
Add a new vertex C to T and connect to vertices C1 and C2
2 Remove rows and columns of d corresponding to C1 and C2
3 Add a row & column to d corresponding to the new cluster C
4, return 7

BB-P
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Basis analysis
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Raman intensity offset [a.u.]

BB-P

Basis analysis
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During the analysis each
measured spectrum of the 2D
spectral array of the analyzed
human breast sample was
compared to the spectra of pure
chemical components mentioned
above using a least square to fit
each convergence to minimize
the fitting error D described by
equation:

2

by varying the weighting factors a, b, c,... of

the basis spectra —.
BS



Adv. Phys. Chem.

Principal component analysis (PCA) is a popular
technique for analyzing large datasets containing a
high number of dimensions/features per
observation, increasing the interpretability of data
while preserving the maximum amount of
Information, and enabling the visualization of
multidimensional data. Formally, PCA is a statistical
technique for reducing the dimensionality of a
dataset.
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PCA is defined as an orthogonal linear transformation that
transforms the data to a new coordinate system such that the
greatest variance by some scalar projection of the data comes
to lie on the first coordinate (called the first principal
component), the second greatest variance on the second
coordinate, and so on.

Dimensionality reduction

The transformation T = X W maps a data vector x; from an
original space of p variables to a new space of p variables
which are uncorrelated over the dataset. However, not all the
principal components need to be kept. Keeping only the

first L principal components, produced by using only the

first L eigenvectors, gives the truncated transformation

BB-P
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The following variable reduction criteria can be used:

1. Criterion of sufficient proportion - when the degree of
explanation of variability reaches at least 75%, it can be
considered that the number of principal components is
sufficient

2. Kaiser's criterion - consists in the elimination of
principal components with eigenvalues less than 1.

3. Scree plot — plotting

a line plot with successive

eigenvalues and finding

\ Point of Inflextion

Scree Plot

a point from which there ~ : %
is a slight decrease in \
eigenvalues to the right . N

BB-P
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When applying PCA, particular attention should be paid to the
following issues:

1.

BB-P

Statistical distribution of data should be close to normal
distribution.

It should be ensured that the examined sample is as
numerous and as representative as possible. The group
size may be smaller, the higher the correlation of the data
with each other. The representativeness of the sample is
based on the selection of samples that do not show
excessive deviations.

However, if there are deviations in the data values that
could significantly affect the final result of the analysis,
they should be removed.
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4. |t is necessary to determine such a number of variables to
enable their proper analysis. Limiting them too much may
introduce errors in further analyzes and give too general a
result, while introducing too many variables may complicate
the analysis.

5. There may be a problem in the form of missing data for
some variables. An appropriate approach may be to replace
missing values with the mean value or to omit a factor in a
given sample if it is not significant

BB-P
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PCA i n a n uts h e I | 3. computeucovariance matrix
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PCA in a nutshell. Source: Lavrenko and Sutton 2011, slide 13.* [



Adv. Phys. Chem.

BB-P

Here are some drawbacks of PCA:

PCA works only if the observed variables are linearly
correlated. If there's no correlation, PCA will fail to
capture adequate variance with fewer components.
PCA is lossy. Information is lost when we discard
insignificant components.

Scaling of variables can yield different results. Hence,
scaling that you use should be documented. Scaling
should not be adjusted to match prior knowledge of data.
Since each principal components is a linear combination
of the original features, visualizations are not easy to
interpret or relate to original features.
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PCA
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PLSDA

PLS-DA combines dimensionality reduction and discriminant analysis
into one algorithm and is especially applicable to modelling
highdimensional data. In addition, PLS-DA does not assume the data to fit
a particular distribution and thus is more flexible than other discriminant
algorithms. A B . .
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PLSDA
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The sensitivity and specificity for calibration and cross validation procedure based
on PLS-DA analysis for CCD18-Co and CRL-1831 normal human colon cells.

Sensitivity (calibration) Sensitivity (cross validation)

1.0 for epithelial cells CRL-1831 1.0 for epithelial cells CRL-1831
1.0 for fibroblast cells CCD18-Co 0.8 for fibroblast cells CCD18-Co
Specificity (calibration) Specificity (cross validation)
1.0 for epithelial cells CRL-1831 1.0 for epithelial cells CRL-1831
1.0 for fibroblast cells CCD18-Co 0.8 for fibroblast cells CCD18-Co

BB-P
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PLSDA

Estimated (blue) and Cross-Validated (green) ROC
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The sensitivity and specificity for calibration and cross validation procedure based
on PLS-DA analysis for CCD18-Co and CRL-1831 normal human colon cells.

Sensitivity (calibration) Sensitivity (cross validation)

1.0 for epithelial cells CRL-1831 1.0 for epithelial cells CRL-1831
1.0 for fibroblast cells CCD18-Co 0.8 for fibroblast cells CCD18-Co
Specificity (calibration) Specificity (cross validation)
1.0 for epithelial cells CRL-1831 1.0 for epithelial cells CRL-1831
1.0 for fibroblast cells CCD18-Co 0.8 for fibroblast cells CCD18-Co
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relevant elements

false negatives true negatives

*Sensitivity (true positive rate) is the
probability of a positive test
result, conditioned on the individual
truly being positive.

*Specificity (true negative rate) is
the probability of a negative test
result, conditioned on the individual true positives false positives
truly being negative.

BB-P selected elements
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number of true positives

sensitivity = — .
number of true positives + number of false negatives
B number of true positives
 total number of sick individuals in population
—= probability of a positive test given that the patient has the disease
o number of true negatives
specificity =

number of true negatives + number of false positives

number of true negatives

~ total number of well individuals in population

— probability of a negative test given that the patient is well

BB-P
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The relationship between sensitivity, specificity, and similar terms can be understood using
the following table. Consider a group with P positive instances and N negative instances of

some condition.

The four

outcomes can be formulated

in a

2%x2 contingency

table or confusion matrix, as well as derivations of several metrics using the four outcomes,

as follows:

Total
population
=P+N

Positive (P)

Actual condition

Negative (N)

Prevalence

__P
“P+N

Accuracy

(ACC)

— TP +TN
P+N

BB-P

Predicted condition

Positive (PP)

True positive (TP),
hit

False positive (FP),
type | error, false alarm,

overestimation

Paositive predictive value (PPV),

precision
_ TP _ 4 _
=pp " 1-FDR

False discovery rate (FDR)
_FP _ 4 _
=pp=1-PPV

Negative (PN)

False negative
(FN),
type Il error, miss,

underestimation

True negative
(TN),

correct rejection

False omission
rate (FOR)
= N =1-NPV
Negative predictive
value (NPV) = 1N
=1-FOR

Informedness, bookmaker

informedness (BM)

=TPR + TNR - 1

True positive rate (TPR),
recall, sensitivity (SEN),
probability of detection, hit rate,

power
=P =1-F\R
False positive rate (FPR),

probability of false alarm, fall-out

_FP _ 4 _
=T TNR

Positive likelihood ratio (LR+)

_TPR
= FPR

Markedness (MK), deltaP (Ap)
= PPV + NPV -1

Prevalence threshold
(PT)

_ /TPRXFPR—FPR
~ TPR—FPR

False negative rate
(FNR),
miss rate

=F=1-7PR

P

True negative rate
(TNR),
specificity (SPC), selectivity

—IN_ 4 _
=N -1-FPR

Negative likelihood ratio

(LR-)
_ FNR
~ TNR

Diagnostic odds ratio
_ LR+
(DOR) = tRr=
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Sens

healthy sick f(x)
' 1 — Spec
1 Sens
1 -

healthy sick f(z)

S 1 1 — Spec
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