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• Overview of wave propagation in various
media (dielectrics, semiconductors, 
conductors)

• Normal and anomalous dispersion

• Emission and absorption of light

• Spontaneous and stimulated emission

• Population inversion

• Optical resonator





The stimulated transitions have several 
important properties:

• the probability of the stimulated transition between the states m
and n is different from zero only for the external radiation field that 
is in the resonance with the transition, for which the photon energy 
ħ of the incident radiation is equal to the energy difference 
between these states, 

• the incident electromagnetic radiation and the radiation generated 
by the stimulated transitions have the same frequencies, phases, 
plane of polarization and direction of propagation. Thus, the 
stimulated emission is, in fact, completely indistinguishable from 
the stimulating external radiation field,

• the probability of the stimulated transitions per time unit is 
proportional to the energy density of the external field , that is 
the energy per unit of the circular frequency from the range 
between  and  +d in the volume unit.
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THERMODYNAMIC EQUILIBRIUM
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From the Planck equation we know that
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In  two level system the population inversion is not possible!!! (upper limit 

N1 = N2)                                  THREE LEVEL SYSTEM- YES



Longitudinal modes
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TOTAL NUMBER OF LONGITUDINAL MODES
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Bandwith of a single mode

1. Resonator Quality Q

2. Degree of Population inversion N1, N2
3. Laser power P
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g1, g2 – degeneration degree

• Q- of resonator is usually lower than a 

theoretical value

• Energy losses from diffraction

• Heating of a medium (by pumping excitation)

• Mechanical nonstabilities
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RESONATOR QUALITY Q

periodoneinlossenergy
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Harmonic oscillator

The model of the damped oscillator can be applied 
to describe phenomena occurring in the optical 
resonator. As a result of diffraction, reflections and 
other system imperfections, the optical resonator 
loses the accumulated energy, and the standing 
wave does not held the constant amplitude.
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The quality factor of the system Q is defined by:

so

where A0 is the amplitude at t=0.
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where the relationship  τ = 1 between the damping factor  and the time  has been employed. 

The time  is a time after which the amplitude A0 of the damped oscillators decays by e=2.718 with respect to the initial time
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What is the relation to the bandwith

of a single mode ?

? 2
1
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Fourier transform
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Properties of  Dirac function
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Function has a maximum for x=0, which means

=0 (n=n0), becuase
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The larger Q-of the resonator, the narrower

the bandwidth of a single mode 
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CONCLUSIONS

Bandwith of spantaneous emission depends

on relaxation processes characterized by the

energy relaxation T1 and phase relaxationT2

Bandwith of stimulated emission

1. Quality of resonatorQ

2. Population inversion

3. Laser power

4. Number of modes
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Transverse modes

We observe an intensity distribution not only along the resonator axis, but also in the plane perpendicular to the direction

of the laser beam propagation. The longitudinal modes are responsible for the spectral characteristics of a laser such as

bandwidth and coherence length whereas the beam divergence, beam diameter, and energy distribution in the plane

perpendicular to the beam propagation are governed by the transverse modes.



Transverse modes



Transverse modes




