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Linear and nonlinear optics

If several weak electric fields act on medium, in linear approximation the polarization is the sum of polarizations

from the individual fields

• It indicates that the weak electric fields obey the superposition principle according to which electromagnetic waves 

spread in medium independently, without interaction with one another. All optical phenomena undergoing this 

principle are called linear and belong to the field of linear optics. If electric fields are strong, this assumption is no 

longer valid. The intense electric fields violate the superposition principle because they interact with each other. All 

optical phenomena for which the superposition principle of electric fields is violated are called nonlinear optic 

phenomena
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Weak electric field E induces in a material an electric induction D,

PπED 4
which depends on medium polarization P. For small intensity of light the polarization induced in the material depends linear on

the electric field intensity E
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is called the electric susceptibility of the first order. This term represents the linear response used in the conventional linear optics. 

The above expression arises from the fact that the medium polarization P is a sum of the orientational polarization  and induced 

polarization.
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When the electric field E of the incident light increases, the polarization of medium is not longer linearly dependent on E and

can be expanded in a power series

• where each term depends on the susceptibility of the n-th order. The susceptibility is a complex quantity and 

contains all of information about the optical properties of the dielectric material: its real part – about the index 

of refraction, the imaginary part – about the absorption coefficient.
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Nonlinear optics
• The susceptibility is a tensor because the electric field applied in the x direction may result in an electron moving in 

the y or z directions as well. It results from the fact that electrons in the material oscillating in the direction of the 

light wave experience not only a restoring force, but also forces from the neighboring molecules. Thus, eq. (5.3) 

should be written in the following form
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where i, j, k denotes x, y, z cartesian components. For the repeated indices of the susceptibility  and the field intensity E

summation must be performed over the components of the electric field.

All optical phenomena for which the superposition principle of electric fields is violated are called nonlinear optic phenomena.

One of the examples of nonlinear phenomena is the dependence of the index of refraction n on the light intensity.

For small intensities the index of refraction has a constant value. However, if liquid medium is illuminated with light of large

Intensity the index of refraction depends directly on the electric field of the light E2 and liquid becomes birefringent like

uniaxial crystal. This effect is known as the Kerr effect. Another example is an absorption coefficient that in linear regime is

expressed in the form of the Lambert-Beer formula:
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where T is the transmission expressed as the ratio of the beam intensity I which is transmitted through the medium to the

intensity of the incident beam I0,  is the absorption coefficient, c is concentration of the absorbing medium, l is length of the

optical path. In the regime of the linear optics the absorption coefficient does not depend on light intensity. For larger

intensities this approximation is not valid any longer.



Second Harmonic Generation (SHG)

The nonlinear phenomena of the second order are described by the second term of 
the equation 
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The second harmonic generation was demonstrated for the first time in 1961 when the light from the ruby laser illuminating 
quartz produced coherent ultraviolet light. The light of the ruby laser at wavelength of 694.3 nm was directed onto a nonlinear 
crystal. By changing the angle between the direction of the laser beam and the direction of the crystal optic axis, it was noticed 

that at certain angles the output beam from the crystal has two components: 694.3 nm and 694.3 nm / 2 = 347.15 nm. Therefore,
besides the fundamental component 694.3 nm, which does not change its frequency after passage through the crystal, an 

additional component appears with the frequency twice the fundamental frequency) called the second harmonic.
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Thus, the polarization induced by interaction of two waves of frequency w1 each consists of two terms: a constant 

time independent polarization 2
0
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Second Harmonic Generation (SHG)

The nonlinear phenomena of the second order are described by the second term of 
the equation 
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The phase matching condition

• The phase matching condition is fulfilled only when
• .
• The phase matching condition can be written more generally as
• (5.14)
• or
• . (5.15)
• Since the wave vector k is related to the photon momentum p (                 ), this condition simply 

indicates that the energy exchange between the waves is possible only when the momentum 
conservation law for three photons participating in the process of frequency mixing is not violated. 
When all the beams are collinear, the condition (5.14) may be replaced by

• , (5.16)
• where we employed the relation                          For the second harmonic with 1 = 2 and , eq. 

(5.16) takes the form
• . (5.17)
• This indicates that the second harmonic may be generated efficiently only when the index of 

refraction at 21 is equal to the index of refraction at 1. In most cases it is impossible due to 
dispersion of the material, which simply means that two waves differing in the wavelength, have 
different indices of refraction as well. However, we can use some tricks related to the properties of 
birefringent crystals.

•
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The phase matching condition
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where: l is a length of crystal, I0() is the intensity of incident radiation at frequency , 
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is the effective susceptibility of the second order, K is a constant for a given wavelength and a given material



How to achieve the high SHG 
efficiency?

This can be achieved by employing:

• laser pulses of high incident intensity I0; the magnitude of I0 are limited by a crystal damage threshold,

• nonlinear materials of high  (2) susceptibility,

• phase matching condition k = 0,

• long optical path l.

However, material thickness l is limited by a certain critical value lcoh, called the coherence length. 

One can see from fig. 5.3 that the fundamental wave at frequency  and the SHG wave traveling along the

crystal are more and more out of phase leading to destructive interference and reducing the second harmonic intensity. 

The distance from the entrance surface of the crystal to the point where the second harmonic intensity has its first maximum 

has been termed the coherence length lcoh. If the crystal length happens to be an odd multiple of the coherence length, 

no second-harmonic light will be emitted.
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The coherence length can be roughly estimated from its definition

2


 cohlk

    



nnk
lcoh







242

π

Scheme illustrating the crystal coherence length



How to achieve the condition of phase 
matching for SHG in dispersive media?
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birefringent crystals

The birefringence can be observed when light passes through many crystals, including calcite, ice, quartz, mica, sugar,

that are anisotropic and have the optic axes. In such crystals the light beam undergoing refraction divides into two rays

in contrast to the isotropic media (liquids, gases, glasses) that show only one ray. The two rays are called the ordinary (o)

and extraordinary (e) rays and have the different phase velocities and the different indices of refraction.

This phenomenon is called double refraction or birefringence and was discovered by Bartholinus and Huygens.

They found that both rays are polarized linearly in planes perpendicular to each other.

2

1

n

n

s






in

sin

the ordinary and extraordinary 

beams do not propagate along the 

same line, the beam is divided 
onto two orthogonally polarized 
beams separated by  called the 
walk-off distance



birefringent crystals



Phase Matching Methods- using 
birefrigence
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One can notice that there are certain directions 
of propagation in the crystal for which the 
fundamental and second harmonic beams have 
the same refraction index in spite of their 
different wavelengths. These directions go along 
a line forming the angle θm with the optic axis 
for which the surfaces of the indices of 
refraction                  and                   intersecton1
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the index matching technique



I type of phase matching 

o+o=e

In uniaxial negative crystals the I type phase 
matching condition is
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In uniaxial positive crystals the I type phase

matching condition is
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I type of phase matching

• If the mixing waves at frequencies 1 and 2

have the same polarization and the sum 
frequency wave 3 = 1+2 (SFG) is polarized 
perpendicularly to their incident polarization, I 
type of phase matching takes place. 



II type of phase matching 
In uniaxial negative crystals the II type phase

matching condition occurs when
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In uniaxial positive crystals the II type phase matching occurs when
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If the mixing waves at frequencies 1 and 2 are of orthogonal 
polarization, the II type phase matching occurs



However, an additional difficulty with SHG process is that the energy of the two beams, the fundamental and the 
second harmonic that are orthogonally polarized will propagate in different directions, characterized by the walk-off 

distance . This comes from the fact that in a birefringent crystal the direction of propagation of the wave phase (wave 
vector k) generally does not coincide with that of the wave energy (Poynting vector s). The direction of Poynting vector 
s is defined as the normal to the tangent drawn at the point of intersection of wave vector k with n() cross section  . 

One can see that for the ordinary beam both vectors coincide in contrast to the extraordinary beam.

Directions of the wave vector k and the energy wave (Poynting vector) s for (a) ordinary beam; extraordinary beam in

negative (b) and positive (c) uniaxial crystal



This disadvantage of the angle-tuned phase matching technique can be eliminated by employing crystals with 
the phase matching angle m = 90○. In this case the direction of propagation and the optic axis is set to 90○ and 

the angle between the Poynting vectors for the two beams is zero.



In systems having the macroscopic center of inversion (liquids, gases, crystals of some classes) it is impossible to generate the 
second harmonic. Indeed, if the system has the center of inversion, the polarization P = f(E) is an odd function of the electric field 
This indicates that the second term  in equation 

has to vanish during one period of the electric field oscillation. The medium can produce the second harmonic only when P = f(E) 
dependence looks like that in figure on right  that takes place only when there is no macroscopic center of inversion.
Therefore, the second harmonic generation is limited to:
some classes of crystals (without the macroscopic inversion symmetry),
surfaces of a medium, gas or liquid systems in which the isotropy has been broken by an electric field or or a density gradient.
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Material

Phase-

matching 

type

Effective 

nonlinear 

coefficient*

[10-12 m/V]

index of 

refraction

n0()

Damage 

threshold

[GW/cm2]

Absorption

[cm-1]

Phase 

matching 

angle

Walk-off 

angle

KD*P II 0.37 1.49 0.5 0.005 53.7 1.45

KTP II 3.18 1.74 0.5 0.010 24.3 0.26

LBO I 1.16 1.56 2.5 0.005 - -

BBO I 1.94 1.62 1.5 0.005 22.8 3.19

LiNbO3

(5%MgO)
I 4.7 2.23 0.10 0.002 90 (1) 0

Properties of important nonlinear materials and phase matching parameters 5.1

* For 1064 nm to 532 nm second-harmonic generation, (1) at T = 107C



SHG for Pico- and Femtosecond
Pulses

The mechanism of the second harmonic generation by femtosecond lasers is the same as discussed previously. However, in the
case of such short pulses one should take into account additional effect, which is negligible for longer pulses or at continuous
work. An ultrashort pulse corresponds to a large spectral width . The phase matching condition should be obeyed not only for 
the center of the spectral distribution0 for the fundamental but also for the whole spectral range of the pulse . If the phase
matching is valid only around the center 0, the generated second harmonic will be spectrally narrowed and the pulse duration
will become longer. 
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Assume the second harmonic is generated under the phase matching condition in a crystal of length l by pulses of duration tp. It 
indicates that the phase velocities of the fundamental beam and the second harmonic are equal  for a given component

It does not mean, however, that the group velocities are also equal. The group velocities of the fundamental beam and the 
second harmonic are usually different due to the dispersion properties of the crystal.

The consequence of the different group velocities is the different time tg of a passage through a crystal of length l for the 
fundamental beam and the second harmonic. 

Another parameter important for ultrashort pulses related to dispersion 
properties is the group delay. 
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This indicates that the second harmonic wave packet is delayed with respect to the fundamental wave packet by t



SHG for Pico- and Femtosecond
Pulses

• The greater the group delay time,                        , the shorter the length of interaction between the 
fundamental and the second harmonic beams.

1
g

2
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The interaction length is limited by the condition

ptt 

This condition defines the effective crystal length l. If the crystal is longer than l leading to the violation of the condition

(5.41), the rest of the crystal is ineffective because the beams do not overlap any longer and the SHG process does not occur.

For
pg tt  the second harmonic intensity does not increase with crystal length but a temporal

pulse stretching occurs.



Optical Parametric Oscillator (OPO)

The parametric conversion can be described as inelastic scattering of a pumping photon p on a crystal lattice. As a result of interaction,

two photons: s and i are generated. The component with the frequency i is called the idler component,

and the component s – the signal component. The energy conservation law requires
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Typical femtosecond OPA systems use BBO crystals and offer tunability from 
1.1 m to 1.6 m (signal) and 1.6 m to 3.0 m (idler). The output pulses are 
near transform-limited with less than 130 fs pulse width and typical energies 

about 100 J



The wavelength coverage can be further extended from <300nm to >10 mm via harmonic 
generation, sum-frequency mixing or difference-frequency mixing. One can get the range 
between 480 and 580 nm for the sum-frequency mixing, 3-10 m for the difference-frequency 
mixing, 600-1200 nm for the II harmonics of the signal and idler components and 300-600 nm for 
the IV harmonic of the signal and idler components.



optical parametric amplifier (OPA) 



OPO, OPA, OPG



The Third Order Nonlinear Processes
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Spontaneous Raman scattering

• The levels denoted as E0 and E1 represent electronic energy levels while the levels numbered with a 
quantum number  represent the vibrational levels. If the sample is illuminated with photons of 
energy , smaller than the resonance energy , all of the photons that interact with the sample are 
not absorbed, but cause the potential energy of the interacting molecules to be raised to virtual 
state,  above the ground state. Almost immediately most molecules return to the ground state 
through the emission of photons of the same energy as the incident photons. This elastic scattering 
is called the Rayleigh scattering. A small fraction of the molecules drops back to the first excited 
vibrational state ( = 1) instead to the ground state. Since the energy of the incident and the 
scattered photons are different, the scattering is inelastic and the process is known as Stokes 
Raman scattering with the scattered radiation observed at lower energy . Molecules that are 
already in the excited vibrational state ( = 1) will undergo analogous effect when illuminated with 
a laser light. When the excited molecules drops back to the ground vibrational state ( = 0), the 
scattered radiation will be observed at higher energy . This scattering is known as anti-Stokes 
Raman scattering, The frequency vib denotes the frequency of a given vibrational mode of the 
molecule.
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Spontaneous Raman scattering

• To describe Raman scattering a fully quantum-mechanical theory is 
required but some intuitive description can be also obtained from a 
classical picture. The electric field                       drives the electron 
displacements that induce the polarization P in a medium 
modulated in time that in turn generates a wave at the same 
frequency L (Rayleigh scattering). When the dipole oscillations are 
modulated additionally by the molecule vibrations at frequency vib

the waves at (                        ) (Stokes Raman scattering) or (               ) 
(anti-Stokes Raman scattering) are generated.
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• When more intense light is employed 
nonlinear Raman processes occur in the 
material

• hyper Raman or 

• stimulated Raman scattering



Hyper Raman or Hyper Rayleigh scattering 

When the intensity of the incident radiation increases, the probability that two or three photons 
participate in the Raman and Rayleigh scattering also increases. Such phenomena are called the 

hyper Raman or hyper Rayleigh scattering. Fig. illustrates hyper Rayleigh and hyper Raman 
scattering related to the second term of equation with involvement of two photons
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Stimulated Raman Scattering

The difference comes from the intensity of the laser incident beam. When the incident light exceeds a certain threshold in the material, it 
can enhance or stimulate the rate of Raman Stokes (or anti-Stokes) emission. This stimulated Raman scattering shows a similarity to the 

stimulated emission in the optically pumped laser. The intense incident beam at frequency       generates the intense Stokes radiation at the 
frequency                            . The Stokes radiation, in turn, stimulates additional Stokes scattering from the virtual scattering state. In contrast 

to the linear Raman scattering, the stimulated Raman scattering can achieve 50% or higher conversion of the pump wavelength to the 
Stokes line. There is a full analogy to the phenomena of the stimulated emission. The only difference is that previously we considered the 

stationary real quantum energy state  in contrast to the virtual scattering state. For the intensities above the material threshold the incident      
and the scattered radiation at                   and                          act simultaneously on a system of molecules leading to creation of phase 

coherent vibrations at the frequency of                          .
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Stimulated Raman Scattering

The stimulated Raman scattering is a special case of four-wave interaction
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For the stimulated Stokes scattering the phase matching condition is given by
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Direction of stimulated anti-Stokes 
scattering

The stimulated anti-Stokes scattering in turn, can be described as fully non-degenerated four-wave interaction
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This indicates that the phase matching condition is achieved only for certain directions for which the relation occurs
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the direction of wave propagation 
of the stimulated anti-Stokes 
scattering is limited to the cone 
surface with the axis parallel to 
the direction of the incident laser 
beam 

SAS kkk  L2



• For the stimulated Stokes scattering the 
phase matching condition             occurs for all 
directions and the scattered light can be 
emitted in every direction. The stimulated 
anti-Stokes scattering is observed in the 
directions of          determined by the phase 
matching condition                    .
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CARS- Coherent anti-Stokes Raman 
scattering

CARS (and CSRS) are techniques based on SRS  (stimulated Raman Scattering) that use two laser beams to excite a sample: at the 
frequency           and        (instead of one at the frequency              in SRS). The phenomena are similar to those described in the 

previous section, but the CARS (and CSRS) signals are much stronger. Moreover, by tuning the frequency        (or            ) to the 
resonance with a molecular vibration                                it is possible to excite most of the vibrations in contrast to SRS for which 

only the strongest vibrational lines could be observed. 
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The stimulated anti-Stokes scattering that is generated with only one beam at the 
frequency       is observed on the cone surface with the cone axis parallel to the wave 

vector in contrast to CARS where the stimulated anti-Stokes scattering that is 
generated with two beams        and is observed only in one direction determined 

by the plane of the vectors  and
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Besides the coherent stimulated anti-Stokes (CARS) and Stokes (CSRS) Raman scattering there are many other techniques of the 
coherent stimulated Raman effect, such as SRGS (Stimulated Raman Gain Spectroscopy) and IRS (Inverse Raman Scattering). The 

nonlinear four-wave interaction of the incident beams at frequencies            or         with the electric field originating from the 
coherent vibrations of molecules at the frequency vib can cause the gain not only at the frequency                         (CSRS) and  

(CARS) but also the Stokes gain  or the intensity loss of the incident beam . The former method related to the Stokes gain is known 
as SRGS (Stimulated Raman Gain Stokes) method and the latter is known as IRS (Inverse Raman Scattering). The schematic 

diagram of the most commonly used Raman techniques is presented in fig.
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RAMAN   AMPLIFIER in OPTICAL FIBER TECHNOLOGY

The stimulated Raman scattering is emerging as a crucial technology for high-speed, long-distance fiberoptic transmission. The stimulated 
Raman scattering amplifies the input signal in an optical fiber in the same way as the stimulated emission from erbium atoms amplifies signals 
in EDFA (erbium-doped fiber amplifiers). The crucial difference comes from the fact that the wavelength of the Raman gain is shifted to higher 
wavelengths (Stokes component) with respect to the pump pulse                                                 ( ; where                    is the vibrational frequency 

of molecules in the fiber - glass itself or a dopant).

Cross section for stimulated Raman scattering in silica shows the shift peaking at a 
frequency 13 THz from the stimulating wavelength, by about 100 nm in the 1550 
nm window

vibp  S vib



RAMAN   AMPLIFIER in OPTICAL FIBER TECHNOLOGY 

In the usual configuration the Raman amplification occurs in the final length of fiber before the receiver or EDFA The signal and 
pump beams travel in the opposite directions, with the pump coupled into the fiber at the receiver end. A coupler directs the

pump light into the transmitting fiber, while diverting signals arriving through the fiber to the receiver or EDFA.

Distributed Raman amplification amplifies signals passing through fiber in the 
transmission cable by transferring energy from a strong pump beam to the less 
powerful signal wavelengths



Nonlinear dispersion phenomena affecting 
picosecond and femtosecond pulse duration

The dispersion properties of an active medium become more and more important for short pulses.

For femtosecond lasers, particularly for pulses shorter than 100 fs, the dispersion properties of the

active medium and the optical elements in the resonator begin to affect significantly the pulse duration.

Moreover, the output beam emitted from the laser usually travels through additional optical elements

(mirrors, prisms, crystals, beamsplitters, filters, etc) before it reaches a detector.

The dispersion has a tremendous influence on the pulse duration.

There are two main mechanisms resulting in modification of the pulse:
•group velocity dispersion (GVD) and 

•self phase modulation (SPM). 

There are many methods to compensate the GVD effect

• prism pairs for the femtosecond pulses

• Gires-Tournois interferometer for picosecond pulses

• Pair of diffraction gratings

• Chirped mirrors



Perfect modelocking

The magnitude of the product Et 

depends on a temporary pulse shape.

Assume that the temporary pulse shape

is described by a Gaussian function
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Thus, for the Gaussian profile the product Et  is equal to 4410.t FWHHFWHH  

FWHHt

FWHH

The relation derived in eq. corresponds to an ideal situation of a perfectly modelocked laser with a pulse called the Fourier-transform limited pulse.

Such a pulse is the shortest pulse 

that can be generated for a given gain spectrum 

In practice such pulses are seldom produced.



Real world (dispersion)

To produce pulses as short as possible, dispersion in the cavity must be 
compensated for by adding optical elements – typically pairs of prisms or 
gratings, specially coated mirrors or a length of optical fiber



The temporal phase, (t), contains frequency-vs.-time information.

The pulse instantaneous angular frequency, inst(t), is defined as:

The Chirp       (Instantaneous frequency)

0( )inst

d
t

dt


  

This pulse increases its frequency linearly in time (from red to blue).

In analogy to bird sounds, this pulse is called a "chirped" pulse.
This pulse is positively chirped, i.e., red leading blue, as from material
dispersion ! 

Time

positivenegative

propagation

0

G. Steinmeyer, European Virtual 
University, http://mitr.p.lodz.pl/evu



The Negatively Chirped Pulse

• We have been considering a pulse whose frequency increases
• linearly with time: a positively chirped pulse.

• One can also have a negatively 
• chirped (Gaussian) pulse, whose 
• instantaneous frequency 
• decreases with time.  

• We simply allow  to be negative
• in the expression for the pulse:

• And the instantaneous frequency will decrease with time:

   
2 2

0 0( ) Re exp / expGE t E t i t t       
  

0 0( ) 2 2inst t t t       

propagation

G. Steinmeyer, European Virtual 
University, http://mitr.p.lodz.pl/evu



Prism pairs for the femtosecond

pulses 

A positively chirped pulse from the cavity of the resonator travels to the prism P1, where the different spectral 
components of the pulse are separated. Then, the broadened pulse enters the prisms P2 and P3 at the Brewster angle 
(to minimize losses). Since the glass of the prisms exhibits a positive GVD, the red wavelengths exhibit larger group 
velocities than the blue wavelengths of the pulse. However, the red wavelengths travel a longer path length in the 
prisms P2 and P3 than the blue wavelengths. By translating prisms P2 and P3 perpendicularly to their bases, it is possible 
to select such a length of the optical path for which the group velocity dispersion will be compensated. As a 
consequence, all spectral components of the pulse reach the prism P4 at the same time, the pulse is free of chirping. As 
a consequence the output pulse is shorter than the input pulse and has an ideal shape, free of GVD effects. The prism 

P4 liquidates the spatial distribution of the spectral components.



Gires-Tournois interferometer for picosecond pulses

In picosecond lasers GVD compensation is usually performed with a Gires-Tournois
interferometer. The Gires-Tournois interferometer consists of a pair of parallel surfaces 
spaced by d. One surface is a partial reflector (reflectivity r <<100%), while the other 
one has 100% reflectivity. Typical spacing is on the order of a few dozen micrometers, 
and the reflectivity r is on the order of several percent

Group delay time tg as a function of wavelength for a Gires-Tournois interferometer



pair of diffraction gratings

During the propagation in the fiber the pulse is affected both by SPM and GVD. The resulting pulse has its spectral

width significantly increased with a significant positive chirp, which is almost linear. Then, the positively chirped pulse

passes through an external pair of gratings, which are designed to produce negative GVD. The negative GVD designed

pair of grating offset the positive chirp from the positive GVD and SPM by making the optical path length of the redder

components substantially greater than the path for the bluer components. Therefore, the trailing bluer edge of the pulse

catches up to the leading redder edge, and all components begin to travel at the same velocity. As a result, the output

pulse exhibits zero GVD, and is compressed to less than its initial value.



Bragg

R. Szipöcs et al., Opt. Lett. 19, 201 (1994)

Chirped mirrors

A chirped mirror is a dielectric mirror with chirped spaces—spaces of varying depth 
designed to reflect varying wavelengths of lights—between the dielectric layers (stack).
Chirped mirrors are used in applications like lasers to reflect a wider range of light 
wavelengths than ordinary dielectric mirrors, or to compensate for the dispersion of 
wavelengths that can be created by some optical elements

G. Steinmeyer, European Virtual 
University, http://mitr.p.lodz.pl

http://en.wikipedia.org/wiki/Dielectric_mirror
http://en.wikipedia.org/wiki/Chirp
http://en.wikipedia.org/wiki/Dispersion_(optics)
http://en.wikipedia.org/wiki/Dispersion_(optics)

