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1.  What’s Different About Condensed Phase Dynamics? 
 

 Systems in the condensed phase are subject to a variety of different environments that 

influence the frequencies (energies) of the optical transitions. Furthermore, these 

environments fluctuate rapidly, reorganize around new electronic or nuclear configurations, 

and induce changes of electronic state, chemical constitution etc. (Figure 1). The dynamical 

information is often hidden behind a mask of spectral broadening resulting from these 

influences, and this makes linear spectroscopy (i.e. absorption spectra) of limited value for 

the study of condensed phase chemical and biological dynamics. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Timescales of Physical and Chemical Phenomena in Condensed Phases 

 

Vibrational frequencies are generally less influenced by differing environments than 

electronic transition frequencies and when short excitation pulses are used well-defined 

vibrational wavepackets are created. By short I mean the spectral bandwidth of the pulse is 

broad enough to span two or more states of the vibrational quantum modes in question. The 

classical Franck principle asserts that the optical excitation takes place at those wavelengths 

that conserve the nuclear kinetic energy. This means that a mapping exists between the 

wavelength of the transition and the nuclear coordinate which, for a diatomic, is simply the 

bond length (Figure 2). 
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Figure 2 Difference potentials for B←X Absorption of Iodine. Note that different 
wavelengths correspond to different I-I bond lengths. 

 

A striking example of this comes from iodine, I2, in hexane solution where the electronic 

spectrum is entirely featureless, yet clear vibrational wavepackets are observed from both 

ground and excited states (Figure 3). The excited state wavepacket damps out very rapidly 

due to dissociation on the excited surface. This dissociation is induced by the solvent, and 

occurs with very low yield in the gas phase. By changing the probe wavelength, the 

dissociating wavepackets can be followed out to distances of ~ 4.25 Å, showing that in a 

room temperature liquid, the dissociative motion is ballistic out to this distance. Around this 

point, collisions with solvent molecules occur and so iodine atoms recoil and recombine with 

their original partners. This is called the cage effect (Figure 3b). 

 The reorganization of a solvent around a newly formed state, such as an electronically 

excited state created by a short optical pulse, can be followed by means of a time-dependent 

shift in the fluorescence spectrum--the time-dependent Stokes shift. The response can be 

characterized by a Stokes shift function S(t), which at ambient temperature, under the 

conditions of linear response, is equivalent to a correlation function, M(t), constructed as 

follows: Consider the transition frequency of a particular molecule, i (Figure 4a). It consists 

of an average value related to its chemical nature, eg  , an offset from the average relating 

to its specific environment, i , and a component that fluctuates as a result of motions of the 

environment (and the nuclear motions of the system itself), ( )eg t . 

 ( )       =  +  ( )  +  i i

eg eg eg it t     . 

The distribution of i  values, ( )if  , gives the inhomogeneous distribution. If the fluctuations 

of molecule i  are typical of the system we can write 
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 
 

 



 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3a (Top): Transient dichroism signal for I2 in hexane 580 nm pump, 580 nm 

probe and decomposition into signals from ground (long-lived oscillations) and excited 

state (short lived oscillations and exponential decay). Bottom: Singular value 

description of signal. The exponential component for the ground state arises from 

rotation of the I2. The second harmonic of the ground state frequency is also seen at 424 

cm 
-1
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Figure 3b Simulations of I2 dissociation dynamics in argon solvent. Plotted are 

histograms of population on the dissociative a state as a function of I-I distance. Note 

how population from the first exit has reversed direction and has moved to shorter I-I 

distances at 540 fs. [9]. 
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Figure 4a Condensed phase spectral dynamics 

 

Figure 5 shows the time-dependent Stokes shift S(t) (Figure 4b) observed for a dye molecule 

coumarin 343 in water. Water has the fastest relaxation of any solvent, but other highly polar 

liquids such as acetonitrile or methanol also have large-amplitude, very rapid (100-200 fs) 

initial relaxations followed by slower components.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4b The Stokes shift and solvation dynamics 

 

In order to remove (or even utilize) the influence of inhomogeneous broadening of optical 

spectra, it is necessary to apply a more sophisticated technique than straightforward pump-
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probe spectroscopy or time-resolved fluorescence spectroscopy. To see how this works we 

need to go a little more deeply into nonlinear spectroscopy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 Time resolved fluorescence spectra for Coumarin 343 in water (left) and 

Stokes shift function calculated from these dyes along with simulated Stokes shift (right) 

[10]. 

 

2.  Nonlinear Spectroscopy 
 Optical spectroscopic experiments are classified according to their power-law 

dependence on the light field. The quantity responsible for generating a signal is the 

polarization, P, written as 

 (1)  (2) (3) (4) (5)  =   +     +      +       +       +   ...P P P P P P  

even powers of P vanish in centrosymmetric media.  (1)  P describes the linear response (i.e. 

absorption, reflection, refraction, propagation). The third order nonlinear response ( (3)P ) will 

be the one we focus on in this lecture. Equivalently, many experiments can be thought of as 

n-wave mixing. The third-order non-linear response is four-wave mixing and the signal ( s , 

wavevector ks) is subject to the following conservation statements 

 1 2 3  =  s        

and when the transition wavelength   <<  than the sample size  

 1 2 3     sk k k k     

By using three laser pulses to probe a system and detecting at a specific signal direction ks, 

one can follow the dynamics of the quantum system as a function of time delays between the 

pulses.] The quantum dynamics of a condensed phase system is most conveniently described 

not by the Schrödinger equation, but by the quantum Liouville equation which describes the 

evolution of the density matrix, ( )t : 

   ( )  =  [ , (t)]i t H
t
 




      (1) 

where [      ,      ] denotes a commutator and  is defined as follows: 

 

The system is an ensemble of systems each with a probability to be in various quantum states 

( )  then k t   

 ( ) ( )k k k
k

P t t          (2) 

with  kP  the probability of finding the system in the state ( )k t . If we expand ( )t  in a 

basis set { }n so that 
*( ) ( )  and ( ) ( )  then n m

n m
t c t n t c t m        has matrix elements 
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 nm k k k
k

P n m      

where the diagonal elements (  etc.)nn describe populations and the off-diagonal elements 

(  etc.)nm are known as coherences 

 

 Describing a non-linear optical experiment is conceptually straightforward (though 

technically rather complex). The essential idea is that the system starts in a thermal 

equilibrium density matrix (where the probabilities are given by the Boltzmann factors), has a 

series of interactions with the light field (three for third order signals), and propagates under 

its Hamiltonian (which includes both system and system-bath interaction Hamiltonians) 

during the periods between the interactions. The polarization is then calculated by acting 

from the left with the dipole operator and taking the trace [2]. 

The form of the density matrix in equ (2) suggests a diagram that is helpful in visualizing and 

organizing non-linear experiments--the double-sided Feynman diagram in which the 

propagation of the ket and bra are depicted separately.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 Double-sided Feynman diagrams and rules for their construction. 
 

Figure 6 gives a set of rules for constructing the diagrams and some simple examples. The 

diagram also gives the direction of the signal field represented by the diagram. For example, 

linear absorption or linear dispersion give a signal wavevector 1 = sk k , while a pump-probe 

experiment gives a 2sk k , the probe pulse direction.  The central portion of the diagram 

contains information on the density matrix during that time interval. For a two-level system 

(levels g and e for ground and excited) the density matrix is 

   =  
gg ge

eg ee

 


 

 
 
 

   

with the diagonal elements describing populations and the off-diagonal elements describing 

coherences. From equ(1) we find that for a system without coupling to the bath and relaxation 

between levels (with Hamiltonian 0H ) 

 ( )    =    0    =   ( ) gg ee

d d
i t i t

dt dt
    
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 ( )    =    ( )ge g e ge

d
i t E E

dt
   

 or ( )       =     exp(( / )( ))    (0)ge e g get i E E    

The coherences oscillate at the Bohr frequency of the system. When relaxation is added to 

this picture (so that the Hamiltonian, 0 RH H H  ) we find that both populations and 

coherences decay in a mutually dependent fashion. If we assume simple exponential decay of 

population and an additional, pure dephasing term for the coherences we can (ignoring 

notational niceties) write a propagator for the ge coherence as 

 1 1 1( )    =    exp( )ge ge geG t i t t      (3) 

where the first term in the exponent comes from 0H and the second from RH . 

 Here    =    1 2( ) gege e g 


    

with 1

i
  the lifetime of e  or g ,and ge



  the pure dephasing rate. ge  is often written as 21 T , 

with 
*

1, 2
1 T and 1 Tgee



   . 

Now consider the diagram labeled 2R  in Figure 7 which describes the following sequence of 

events (reading from right to left) 

 3 2 1( ) ( ) ( )eg ee ge gG t G t G t   

The trace (sum of diagonal elements) of such a matrix quantity is called a response function, 

in this case conventionally called 2R  

2 3, 2 1 3 2 1( , )    =     [ ( ) ( ) ( ) ]eg ee ge gR t t t Tr G t G t G t   

Note that there are two coherence and one population period, and that the second coherence is 

the complex conjugate of the first. 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 Two level systems are described by four Feynman diagrams and their complex 

conjugates. 
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To simplify things let‟s assume that we do the experiment with two pulses, both of which are 

very short, and the second of which interacts twice with the system if we choose to detect the 

signal in the direction 2 12sk k k  , and the time interval between these two interactions goes 

to zero. The evolution of the system will be governed by the consecutive action of the two 

propagators 1 3( ) and ( )ge egG t G t  (In this case 2t is set to zero). 

 

 Here 1( )geG t  can be written as in equ (3) which is equivalent to 

 1 1 1( )     =     exp(+ )ge eg egG t i t t   

 since .eg ge    

 

If we return to the expression for the transition frequency and (for the moment) ignore the 

fluctuating term, we have 

  <  eg eg eg ge         

Then the combined action of the two propagators  

 

3 1 3 1

3 1

3 1

( ) ( )  exp( ( ))

                          exp( ( ))

                          exp( ( ))                                       (4)

cg ge eg

eg

eg

G t G t i t t

t t

i t t





    

  

  
  

This is just for one molecule. Now consider a distribution of frequencies in the ensemble, and 

assume ( )egf  is a Gaussian with width  . Then the last term in equ (4) for the ensemble 

becomes 

 

2

3 1exp exp  ( ( ))
eg

eg egd i t t


 




 
    

  

If  is very large, the Gaussian term becomes unity and we are left with 

 3 1exp( ( ))eg egd i t t 




   

This is the integral representation of the Dirac delta function 1 3( )t t  . Thus the elapsed time 

when 3 1t t  is the only time where the third term is (4) is nonzero. In other words at 3 1t t , 

we get a signal and the inhomogeneous contribution ( ( ))egf   is removed. This signal is the 

photon echo. We could go on and calculate the decay of the echo signal as we increase 1t . For 

the very simple model we have used here, the echo decays as exp( 4 )egt   if the 

inhomogeneous broadening is very large. If we look at the first diagram 1( )R  in Figure 7 we 

note two things: (1) the second coherence period is the same as the first and 

3 1( ) ( )eg egG t G t does not lead to an echo (we call this a non-rephasing sequence), and (2) 1sk k , 

so in the limit of very short pulses this signal is spatially distinct from the echo signal at 

2 12sk k k  . Returning to the echo signal we might guess that for less extreme cases of 

inhomogeneous broadening the echo will be smeared out in time and because of this we will 

see, very shortly, interesting consequences. It should also be clear that the fluctuations 

described by ( )eg t or ( )M t for the ensemble will also influence the echo signal 

significantly. 
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3. Real Systems—the Peak Shift Method 
 Now we add back a finite middle time period to carry out a three-pulse photon echo 

experiment as shown in Figure 8. By convention we label 1 2 as ,  as Tt t (the population or 

waiting time), and 3  as t t . In the simplest case the intensity of the echo signal is detected as 

 is scanned for fixed values of T . In this case the signal is  

 
2

0

I ( ,T)  ( ,T, )                                                 (5)dt R t 


   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 The three-pulse echo. The photograph shows actual data indicating the various 

phase matched signals generated. The two three-pulse echo signals are indicated by 

black spots on the screen in the experimental layout. 

 

Representative signals for three different values of T for the dye Nile blue dissolved is 

acetonitrile are shown in Figure 9 as a function of  . (Note that in Figure 8 there are two 

symmetrically related signals 2 3 1 2 3 1and  around 0s sk k k k k k k k         (positive 

 means pulse 1 arrives first, negative   means pulse two comes first). Both signals are 

plotted in Figure 9. The echo signals themselves in Figure 9 are very nearly symmetric (fits to 

a Gaussian function are shown) meaning that it would be very difficult to extract dynamical 

information from fits to the echo decay. However the signals, for small values of T , do not 

peak at 0  . The reasons for this effect are described at length in ref [11], but simply put 

because the conditions behind our simple derivation do not hold, the echo signal has a finite 

width and, for small values of 1( )t , a portion of the echo is forbidden by causality because 

the echo width places it before pulse 3! Since, as equ (5) shows, we are measuring the area 

under the echo signal, because of the causality effect the area increases as  increases even 

though the maximum amplitude of the echo decreases. For 0  , we have a non-rephasing 

sequence (Figure 10) and the signal always peaks at 0  . For long enough times when 

fluctuations have destroyed the memory of the transition frequency, rephasing (echo 

generation) is no longer possible and, as Figure 9 shows, the signal becomes symmetric 

around 0  .  
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Figure 9 Integrated three pulse photon echoes for Nile Blue at three populations times 

in acetonitrile. 

 

We can characterize these dynamics by a quantity we call the peak shift or *(T) , the shift of 

the integrated echo signal maximum from 0  . This is most accurately measured by taking 

half the separation of the two echo signals in Figure 9 since they must be symmetric around 

0   at all times. 

 Figure 11 shows the peak shift vs. population time for the same dye molecule IR144 

in dilute solution in ethanol at 294K, in a polymer glass (PMMA) at 294K, and at 32K. The 

oscillating features in the plot come from vibrational wavepackets as described in Section 1, 

and will not be discussed further.  Note the similarity of the ethanol and PMMA 294K data 

up to ~160 fs. Simply put it takes ethanol 160 fs to realize it is a liquid and can change its 

structure to accommodate the excited dye molecule. Eventually (on a 50 ps timescale) the 

peak shift decays to zero in ethanol as a result of diffusive motions at times larger than ~200 

fs. In other words, the system becomes homogeneous when the probe (IR144) has sampled all 

possible environments. In PMMA, however, static inhomogeneous broadening remains for as 

long as we care to look. The peak shift goes to a finite value (~  5.75 fs) and remains there. 

This long time value then reflects the width of the inhomogeneous distribution. At lower 

temperature the whole curve shifts to higher *(T) values. This is largely because the 

amplitude of the fluctuations, 2 1/ 2 ,   is reduced at lower temperature, and rather roughly 

the initial peak shift is inversely proportional to the amplitude of the fluctuations. 

 The whole peak shift curve can be described using models for ( )M t  obtained either 

from computer simulation, sophisticated dielectric response theories, or more empirical 

approaches such as the Brownian oscillator model.  Rather then pursue these approaches we 

will apply the peak shift method to rather more complex systems—photosynthetic light 

harvesting complexes. 
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Figure 10 Feynman diagrams illustrating he origin of the peak shift and the reason it 

decays with increasing population time. 

 

 The purple bacterial photosynthetic unit shown in Figure 12 in idealized form on the 

right and in an AFM image on the left, consists of multiple LH2 rings (with 27 BChl) in 

contact either with each other or with the LH1 ring that surrounds and eventually transfers the 

absorbed excitation energy to the reaction center. The various timescales marked in Figure 12 

were determined by pump-probe and photon echo spectroscopy. Note that the slowest step is 

the final one—transfer from LH1 to the reaction center.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11 Three-pulse echo peak shift data for the dye IR 144 in two environments in a 

fluid solvent (ethanol) and a polymer glass at two temperatures. The inset shows data 

out to longer population times (note the logarithmic timescale). 
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 Figure 13 shows the structure of the LH1 light harvesting complex surrounding the 

reaction center of a purple bacterium. LH1 contains 32 bacteriochlorophyll (BChl) molecules 

which present a challenge to the measurement of energy flow within the ring since all the 

molecules are chemically identical. However, there are fluctuations (inhomogeneous 

broadening) of the site energies of the individual BChl molecules and this suggests that the 

photon echo peak shift (3PEPS) could be used to determine the dynamics. 3PEPS data for 

LH1 are shown in Figure 14 (solid circles). The very rapid (90 fs) decay seen in these data is 

ascribed to energy transfer observed by the loss of memory of the initial transition frequency 

as the excitation moves from site to site. This picture is confirmed by the data on the B820 

subunit of LH1 also shown in Figure 14 (solid squares). The B820 subunit consists of just 

one pair of BChl molecules and two helices  obtained by applying detergent to LH1. The 

solid lines through the two data sets in Figure 14 are calculated with identical parameters, 

except that for B820 the rate of energy transfer is set to zero. 

 

Figure 12 The photosynthetic inset of a purple bacterium. 

 

 It should be noted that the peak shift of the LH1 sample in Figure 14 does not decay 

to zero, but to a fixed value of ~3 fs. This implies that the energy transfer around a single 

LH1 does not average over the entire disorder of the ensemble—each individual LH1 ring 

contains a large fraction, but not all, of the possible site energies. This raises the possibility in 

a photosynthetic unit (Figure 12) with multiple light harvesting complexes that it may be 

possible to measure the transfer of excitation energy both within and between light harvesting 

complexes. 

 LH2 contains two rings of BChl molecules—one of 18 BChl absorbs at 850 nm, and a 

second of 9 BChl absorbs at 800 nm, approximately the transition wavelength of monomeric 

BChl in solution. The shift to 850 nm comes about through electronic interactions between 

the BChls and spectral shifting from two hydrogen bonds from two amino acids in the protein. 
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Figure 13 The structure of the LH1/reaction center complex from a purple bacterium. 

 

Figure 15 shows peak shift data at 850 nm for two different samples—solubalized, isolated 

individual LH2 rings (red circles), and LH2 complexes in contact with each other in an intact 

membrane (blue squares). The rapid decay of the peak shift is the same in both samples and 

results from ultrafast energy transfer (or equivalently exciton relaxation) within a single B850 

ring. However, only the membrane sample shows a much slower (5 ps) component. It seems 

very likely that this 5 ps component describes energy transfer between the different LH2 

rings in the membrane leading to averaging over the full range of disorder in the sample on 

this timescale. 

 Thus the peak shift method, far from being defeated by static energetic disorder, 

enables its exploitation to reveal microscopic dynamics of complex systems whose linear 

absorption spectra are often singularly uninformative. 

 Although the 3PEPS method is quite powerful for studying complex systems, it is not 

the most powerful technique. For this we turn to two-dimensional optical spectroscopy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14 Three-pulse echo peak shift data for the entire LH1 ring [●] and the B820 

subunit which contains two BChl molecules [■]. The solid lines are calculated. See text. 



 15 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Figure 15 Three-pulse echo peak shift data for isolated LH2 complexes (red) and a 

membrane sample in which LH2 to LH2 transfer is possible (blue). 

 

4. Two-Dimensional Electronic Spectroscopy 
 The goal of two-dimensional optical spectroscopy is to characterize the complete 

signal field as a function of the three time periods involved in a four-wave mixing experiment.  

Generally, the signal in which the system is in a coherence in the first ( ) and the third ( )t  

time periods and in a population in the middle (T) period  is recorded (Figure 8). The 2D 

spectrum then consists of a plot of t( ,T, )S   for fixed values of the population time. In 

other words it shows the correlation between the excitation ( )  and detection ( )t  

frequencies, and how this correlation evolves in time. The sequence of events is depicted in 

Figure 16, and the experimental arrangement needed to record such a spectrum in Figure 17. 

In principle the required spectrum could be obtained by scanning both  and t , and carrying 

out double Fourier transformation in  and t  of the signal field ( ,T, )S t . In practice, the 

signal in the dimensiont   is obtained by spectral interferometry, i.e. heterodyne detection in 

the frequency domain with a reference local oscillator (LO). The signal recorded is 
2

( ) ( )exp(sig LO LOE E i t    , and only a single Fourier transform along  is required to 

obtain the 2D spectrum. 

 Figure 18 shows a schematic representation of a 2D spectrum at a fixed value of T . 

The peaks along the diagonal represent the ordinary linear absorption spectrum. Diagonal 

elongation of the peaks implies strong correlation between excitation and detection 

frequencies, in other words, inhomogeneous broadening. If there is no correlation between 

the excitation and detection frequencies, the peak should be symmetrical—a 2D Lorentzian 

produces a „star‟-shaped peak, while a 2D Gaussian gives a round peak. Note the 2D 

spectrum carries sign information—generally ground state bleaching and stimulated emission 

are represented as positive green to red in Figure 18 and excited state absorption as negative 

(blue to violet in Figure 18). Peaks off the diagonal are called cross peaks. They have two 

types of origin: (1) cross peaks arise from electronic coupling between different 

chromophores. In the case of a electronically coupled dimer, say, with two allowed bands, 

both molecules contribute to both transitions. 
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Figure 16 The pulse sequence for two-dimensional electronic spectroscopy. The 

experiment correlates the frequencies observed during t with those prepared during τ 

for different (fixed) values of T. 

  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17 Experimental arrangement for 2D electronic spectroscopy. 

 

This means that absorption into one of the bands will cause bleaching in both of them. Thus 

excitation in, for example, the higher energy band, will also produce a response in detection 

at the lower band frequency and a new peak at  and upper t lower     will appear. We will 

demonstrate shortly that such a peak vanishes if there is no coupling between the two 

monomers. (2) Staying with the dimer example, for larger values of T population initially in 

the upper state may have relaxed into the lower excited state, again producing a cross peak at 

 and upper t lower     . 

 Figure 19 allows us to make this a little more formal. The dimer system has a single 

non-degenerate ground state, g , two singly excited states 1 2 and e e , and a doubly excited state, 

f . Four-wave mixing, as the name implies, involves four light field/matter interactions, and  
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Figure 18 Model spectrum of a three state complex. Left: linear absorption spectrum. 

Right: 2D electronic spectrum. The linear spectrum gives the diagonal peaks. 

 

the balance between two types of contributions determines the amplitude of the two cross 

peaks in Figure 19. The first term involves the sequence shown on the left of Figure 19 as 

either a double-sided Feynman diagram or a ladder diagram. This is an echo sequence with 

2e g during t  and 1ge during  . (Of course if all four interactions involved only g and 1e , or 

only g and 2e , only diagonal peaks would be generated). The amplitude of the rephasing 

sequence depends on 1e twice and 2e twice for the 12S cross peak, i.e. 2 2

1 2e e  where 1e  

is the transition moment for the 1g e  transition and the angle brackets imply orientational 

averaging for the randomly oriented sample. The existence of the doubly excited (or two-

exciton) state f requires that a second sequence be considered as shown on the right of 

Figure 19. This is excited state absorption and appears with an opposite sign to the first 

process which involves bleaching/stimulated emission. The Feynman diagram shows the 

same thing via the unequal number of bra and ket interactions with the fields. The dipole 

factor, including the sign, associated with this process is 2

1 1 1e e f e    with 1e f the 

transition dipole for the 1e f transition. The amplitude of the 12S cross peak is determined 

by the destructive interference between these two pathways i.e. 

 

 
2 2 2

12 e1 2 e1 1 1 <   <ee e f eS            (6) 

 

In the simplest Frenkel Hamiltonian 1 2 ge e f   and 2 1 ge e f  . When the coupling goes 

to zero the right-hand sequence simply amounts to two transitions 1 2(  twice and  twice)e eg g  

on the two molecules because now 1 2 = e f e   implying transitions between two independent 

molecules. Thus the second term in (6) becomes identical to the first and 12S vanishes. Cross 

peaks do not exist for uncoupled chromophores. Knowledge of cross peak amplitude and, in 

particular, the way in which cross peak amplitude depends on the relative polarizations of the 
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four optical fields can be used to determine the spatial structure of the system‟s electronic 

states, and provide rough atomic structural information. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19 Feynman diagrams and energy level diagrams showing the origin of cross 

peaks in a dimer at T=0. 

 

Figure 20 shows two experimental 2D electronic spectra for the Fenna-Matthews-Olson 

complex which contains seven non-equivalent BChl molecules. There are thus seven 1-

exciton states and 21 2-exciton states. In the left spectrum of Figure 20, the pulse 

polarizations have been chosen to discriminate against diagonal peaks to better reveal the 

cross peaks. For comparison the right spectrum (“all parallel”) is dominated by the diagonal 

peaks. 

 
Figure 20 2D spectra of the FMO complex with all parallel polarization (right) and 

polarization selected to suppress the diagonal peaks (left). The four polarizations are 

read right to left and describe pulse 1, 2, 3 and signal, respectively. 

 

 Figure 20 shows experimental and calculated 2D spectra for the light harvesting 

complex LH3 (at 77K) which has a structure essentially identical to LH2 discussed earlier, 

with two rings of 9 and 18 BChl, respectively. In LH3 the spectrum of the strongly 
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interacting ring of 18 BChl is shifted to peak at 820 nm, while the ring of 9 BChl remains at 

800 nm. The clear cross peak developing from 1-5 ps indicates relaxation (energy transfer) 

from B800 to B820. Strong excited state absorption features also develop on the same 

timescale, and the B800 diagonal peak eventually disappears. The B800 and B820 diagonal 

peaks show very different short-time dynamics, with noticeable changes (loss of diagonal 

character) in the B820 band over the first 50 fs and no discernable change in the B800 band. 

This is due to the rapid relaxation within the inhomogeneous broadened set of 18 1-exciton 

states of B820, leading to loss of memory. Transfer within B800 is much slower. Also note 

the noticeable asymmetry around the diagonal of the B800 diagonal peak. This arises from 

interference between ground to 1-exciton and 1-exciton to 2-exciton states which have 

opposite signs. The redistribution of oscillator strength over the ground to 1-exciton and 1-

exciton to 2-exciton transitions makes the 2D spectrum extremely sensitive to electronic 

couplings. If the B800-B800 coupling were zero, the B800 diagonal peak would be 

symmetrical about the diagonal. 

 The actual coupling is ~30 cm
-1

 and this produces the clear asymmetry evident in 

Figure 21. Detailed analysis of the data in Figure 21 confirms earlier conclusions that B800 to 

B820 energy transfer occurs through dark states which relax to the lower (allowed) levels of 

B820. 

 

Figure 21 Comparison of measured and calculated 2D spectra for the LH3 complex 

which is structurally almost identical to LH2 shown in Figure 12. 
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Figure 22 Coherence quantum beating in the FMO complex [62]. (a) The 2D spectrum 

of the FMO complex measured at T=200 fs and 77 K. (b) Time-evolution of the diagonal 

sliceof the 2D spectrum. The beating signal of the first exciton peak is emphasized with 

the solid black line. (c) Comparison between the interpolated power spectrum of this 

_rst exciton beating signal (dashed curve) and the theoretical beat spectrum predicted 

by the excitonic energy structure (black stick spectrum). (d) The amplitude of the 

exciton 1 diagonal peak (black curve) and the ratio of the diagonal to anti-diagonal 

widths of the peak (red curve). The anticorrelation is a characteristic of excitonic 

quantum beating [21, 22].  

 

Two-dimensional spectroscopy has been applied to several light harvesting complexes 

including the most abundant, LHCII. It has revealed energy transfer pathways and 

mechanisms, spatial landscapes and electronic coupling strengths. These applications have 

been recently reviewed in reference (7). 

 A final important aspect of 2D spectroscopy relates to its ability to reveal quantum 

dynamical aspects of phenomena. This arises fundamentally because 2D spectroscopy is a 

measurement at the amplitude level whereas most techniques detect the absolute square of the 

signal field. Consider the evaluation of a quantum superposition 

 1 1 2 2( )      =      exp( )   exp( )t a i t e b i t e      

The density matrix is thus 
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1 1 2 2

*

1 2 1 2

*

1 2 2 1

( ) (t)    =     +  

         + exp( ( ) ) 

         + exp( ( ) ) 

t a e e b e e

ab i t e e

a b i t e e

 

 

 

 


 

The first two terms in equ. (7) reflect populations, while the second two terms describe 

coherences. 2D spectroscopy can directly measure the phase evolution of coherences and thus 

directly reveal the presence of quantum coherence as a function of time in a dynamical 

system. Experiments have shown the presence of remarkably long-lived electronic coherence 

in photosynthetic light harvesting complexes (Figure 22), and this has become a very active 

area of research, with connections ranging from protein structure to quantum information and 

quantum computing. 
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