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4.  Nonlinear phenomena 
 

For many years the nonlinear phenomena were the matter of concern for relatively 

narrow circle of professionals dealing with the laser spectroscopy. So far, Raman scattering 

phenomena have widely been used in chemistry, materials engineering, and physics for 

research on the nature of interactions, chemical bonds and properties of semiconductors. 

During the last decade the interest in the stimulated Raman scattering and other nonlinear 

optical phenomena has significantly increased with the development of optical 

telecommunication. After 2000, almost all systems (long-haul – defined as 300 to 800 km 

and ultralong-haul – above 800km) have been using Raman amplification, substituting the 

most conventional in nineties EDFAs, erbium-doped fibre amplifiers. Despite the Raman 

amplification phenomenon had been demonstrated in optical waveguides by Stolen and Ippen 

in the beginning of seventies [1], the eighties and the former half of nineties were dominated 

by EDFA amplifiers. In the latter half of nineties the increase of interest in Raman amplifiers 

occurred. Evidently, the physics of Raman scattering phenomenon has remained the same 

since Raman and Krishnan publication in Nature in 1929 [2]. However, for the phenomenon 

to be applied there has to occur the significant progress in the optical waveguide technologies 

[3-5]. 

The radiation emitted by conventional light sources like electric bulbs, photoflash 

lamps, etc., is neither monochromatic nor coherent in time and space. Intensity of electric 

field of radiation emitted by conventional light sources is small (10-10
3
 V/cm). Radiation of 

such intensity, when interacting with matter (reflection of light, scattering, absorption and 

refraction of light), does not change its macro- and microscopic properties, because it is 

several orders of magnitude smaller than the intensity of electric field in matter (of the order 
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of 10
9
 V/cm). The intensity of laser light, in particular generated by pulse lasers emitting short 

pulses, can reach values of the order of 10
12

 W/cm
2
 that corresponds to the intensity of the 

electric field of radiation of 10
5
 to 10

8
 V/cm. It is therefore comparable to the intensity of 

electric fields in matters. 

Weak electric fields E of radiation generate electric induction D, 

PED π4 ,      (4.1) 

which depends on the polarisation of a medium P. For small values of light intensities, the 

polarisation is linearly related to the intensity of electric field E: 
 

EP
1

 ,      (4.2) 

where 
 1

  - electric susceptibility. 

The above formula arises from the fact that the medium polarisation P is a sum of orientation 

polarisation 
orient

P  )
3

(
2

orient
E
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NP


  and induced polarisation 

ind
P  

)(
ind

ENP  . 

If the intensity of the electric field E increases, the medium polarisation is no longer 

linearly dependent on E and should  be expressed by the formula 
     

...EEEP 
33221

   (4.3) 

For the correctness of notation, the above formula can be rewritten taking into account the 

fact that the electric susceptibility   is not a scalar but a tensor:   

 
     

...EEEEEEP lkjijklkjijkjiji 
321

    (4.4) 

For the repeated subscripts of  and the field intensity E, the summation over the x,y,z 

components of the field intensity should be done. If several weak electric fields act on a 

medium (e.g. a few leaser beams), the electric polarisation in a linear approximation is a sum 

of polarisation components of individual fields: 

        ...tttt  ,,,, rPrPrPrP 321      (4.5) 

It means that the weak electric fields meet the superposition principle, according to which the 

electromagnetic waves propagate in a medium independently, without mutual interaction. All 

the optical phenomena that can be approximated by that principle are called the linear optical 

phenomena. In case of strong electric fields the approximation (4.5) is not valid. The electric 

fields do not meet the superposition principle any longer. All the optical phenomena not 

meeting the superposition principle are called the nonlinear optical phenomena. An example 

of the nonlinear phenomenon is the dependence of the refractive index n on light intensity 

(Kerr effect). For low intensities of light the index is constant. However, if a medium is 

exposed to the light of the high intensity this is no longer valid and  the refractive index is 

proportional to E
2 

and makes liquids birefringent like crystals. Another example of linear 

phenomena is the absorption Lambert-Beer law 

)exp(0 clI/IT          (4.6) 

or 

cl
T

A 
1

ln ,         (4.7) 

where T is the transmittance of a system and it corresponds to the ratio of the output beam 

intensity I that went through the medium to the input beam I0,  - absorption coefficient, c – 

concentration of substance absorbing the light, l –length of an optical path. Within the linear 

optics the absorption coefficient does not depend on light intensity. For higher light intensities 

the absorption coefficient does depend on that intensity. 
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4.1. Second-order nonlinear phenomena [6] 

 
The second-order nonlinear phenomena are described by the second term of the 

equation (4.4): 

kjijki
EEP

)2(
          (4.8) 

The most often employed second-order nonlinear phenomena are as follows: a) second 

harmonic generation, b) frequency mixing, c) parametric amplification. The detailed 

discussion of the second-order nonlinear phenomena can be found elsewhere [4]. 

The second harmonic generation can be exemplified by the following experiment. Let 

us direct  a ruby laser light of the wavelength 694.3 nm on a nonlinear crystal. When we 

rotate the crystal, one can notice that at a specific angle between the direction of laser beam 

and the optical axis, the crystal output laser beam consists of two components: 694.3 nm and 

694.3 nm/2 = 347.15 nm. Therefore, apart from the fundamental component 694.3 nm there 

appears additional component, called the second harmonic of the frequency twice as high as 

the fundamental (Fig. 4.3). The name of the process of the second harmonic generation can 

also be abbreviated to SHG. 

 

 

 
 

Fig. 4.1. Scheme of the second harmonic generation (SHG) 

 

The second-order nonlinear phenomena are not so important  in glass optical fibers. The silica 

glasses in contrast to crystals have amorphous structure with the inversion center and do not 

have the distinguished axis of symmetry. The inversion center simply means that the second – 

order term (4.8) disappears  and SHG do not occur in glass optical fibers. The detailed 

description of the second-order nonlinear phenomena can be found in [4]. 

 

4.2. Third-order nonlinear phenomena [6] 

 
One of the best known nonlinear optical phenomenon of the third-order is the 

stimulated Raman scattering. Raman scattering processes can be expressed by the following 

equation 
     

lkjijklkjijkiji EEEEEEP 321   .     (4.9) 

The first term of the equation refers to the linear polarisation and depicts the spontaneous 

linear Raman scattering. The second term express the spontaneous nonlinear Raman 

scattering (hyperRaman scattering, HRS). The third term corresponds to the stimulated 

Raman scattering. 
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The spontaneous nonlinear Raman scattering has been described in a range of 

textbooks. The spontaneous Raman scattering can be outlined according to the scheme 

below(Fig. 4.2): 

 

 

 
 

Fig. 4.2. Scheme of Rayleigh and Raman scattering. 

 

E0 and E1 states correspond to the electronic states; the states enumerated with the quantum 

numbers  denote the vibration states. When a photon of light with energy of 
L

  which is 

lower than the resonance energy 01
EEE  , falls onto a molecule, it undergoes the 

elastic or the inelastic scattering. The elastic scattering is called Rayleigh scattering, whereas 

the inelastic scattering – Raman scattering. The scattering process can be described 

classically. The electric field of the intensity  tE
L

 rkcos
0

 produces the electron 

polarisation P of a medium that is time-modulated with the frequency of  L . Changeable 

over time the polarisation of medium induces the emission of electromagnetic waves of the 

same frequency  L  (when dipole vibration are not modulated by vibrations of a molecule of 

the frequency 
wib

 ) or the frequency  L   
wib

  (if the vibrations of dipole are additionally 

modulated by the vibrations of a molecule with the frequency of 
wib

 ). When the incident 

and scattered radiation frequencies are the same and equal  L , we call the phenomenon 

Rayleigh scattering  or elastic scattering. When the frequency of the scattered radiation is 

lower )(
wibL

   or higher  
wibL

   than the frequency of incident radiation  L . 

The scattered radiation of the frequency 
wibL

   is called the Stokes Raman scattering 

and that of the frequency 
wibL

   - anti-Stokes Raman scattering. 

Quantum description can also be applied for the Raman scattering processes. The 

incident photon excites a molecule being in an electron state E0 and a ground vibrational state 

( = 0) to a virtual state E that meets the condition 10 EEE  . The lifetime of the 

molecule being in the virtual state is very short and afterwards it turns to: a) the initial state 

),( 00 E  that is accompanied by the photon emission of L  energy (Rayleigh 

scattering), b) the excited vibration state ),( 10 E  emitting photons of energy 
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 wibL    (Stokes Raman scattering) or c) if the   photon irradiates  a molecule in the 

electronic  state E0 and the excited vibration state  = 1, then it returns to the ground state 

),( 00 E  that is accompanied by the emission of the energy photon,  wibL    (anti-

Stokes Raman scattering). When the intensity of the incident radiation increases, the 

probability of the two photons Raman and Rayleigh scattering increases. Such phenomena are 

known as hyperRaman or hyperRayleigh (Fig. 4.3) and they are described by the second term 

of the (4.9).       

                                                      

 
 

Fig. 4.3. Hyper-Rayleigh and hyper-Raman scattering 

 

4.3. Stimulated Raman scattering (SRS) 
 

The above described processes belong to the group of spontaneous scattering 

phenomena. Now, let us focus on the nonlinear third-order optical phenomena  (3), which 

are responsible for the stimulated Raman scattering (the third term in (4.9)). 

The scheme of quantum transitions in the stimulated Raman scattering (Fig. 4.4) does 

not differ from these in the spontaneous Raman scattering (Fig. 4.2). 

 

                
 

Fig. 4.4. Scheme of stimulated Raman scattering.  
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The difference is that the incident laser beam of the frequency 
L

  characterised by the high 

intensity generates a strong Stokes beam wibLs
  . As a result the Stokes beam 

stimulates additional Stokes scattering from the virtual state E. This effect  is analogous to the 

spontaneous and stimulated emission in a laser. The main difference is that absorption, 

spontaneous and stimulated emission occur between the stationary quantum states. For the  

incident and the scattered light of high intensity, two beams - L
  and s

  exist and  interact 

with molecules of the system. This interaction leads to the generation of the phase coherent 

vibrations of the frequency sLwib
  . This denotes that all the molecules of the 

system vibrate in the same phase of the frequency 
wib

 , because the effects of inter- or 

intramolecular interactions destroying the coherence are much  lower than the strong 

interaction of a molecule with the electric fields of the beams 
L

  and 
s

 . 

The stimulated anti-Stokes scattering is generated in a similar way. The spontaneous 

Raman scattering generates a weak anti-Stokes signal, since the population of the excited 

vibration levels is low according to the Boltzmann distribution. Illumination of a system with 

a high intensity  L  beam leads to a perturbation of the Bolzmann distribution and as a result 

the stimulated anti-Stokes intensity increases significantly.  

The stimulated Raman scattering is the special case of the four-wave interaction 

 3214
  ,       (4.10) 

0
4321
 kkkkk .      (4.11) 

The equations (4.10) and (4.11) describe  either three input 
321

,,   beams and one output 

4
  beam interaction or two-fold interaction of the same beam like in the case of the 

stimulated Raman scattering. Indeed, the four-wave interaction for the stimulated Stokes 

scattering can be written as follows 

LLLLwibL
)(  

sss4 ,  (4.12) 

thus, s4
  ; L

 
1 ; s2

  ; L
 

3 .    (4.13) 

The intensity of the stimulated Stokes scattering, w

S
I , can be expressed by the following 

formula 

  
2

2223

2

2










/kl

/kl
lIIAI L






sin
S

w

S ,      (4.14) 

where: A – a constant, LI  and SI  - the intensities of the incident (pumping) and Stokes 

scattering beams, l – optical path length. 

The anti-Stokes stimulated scattering can be written as a four-wave interaction 

 
sAS

 
LLwibL ,      (4.15) 

thus AS4
  ; 

L
 

1
; 

L
 

2
; 

S3
  .    (4.16) 

The intensity of the stimulated anti-Stokes scattering, 
w

AS
I , is expressed by the equation 

  
2

2223

2

2










/kl

/kl
lIIAI L






sin
S

w

AS .     (4.17) 

The expressions (4.14) and (4.17) do not differ in the form, however, one should notice that 

the phase matching condition, k , varies for the Stokes and the anti-Stokes stimulated 
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scattering.  The phase matching condition for the stimulated Stokes scattering takes the 

following form (4.12) 

0
SLSL
kkkkk ,       (4.18) 

which indicates that the phase matching condition is satisfied for every propagation direction 

of the stimulated Stokes scattering. It means  that the phase matching between the pumping 

beam,  L , Stokes beam, 
s

 , and vibrations is achieved  automatically. 

In case of the anti-Stokes scattering the phase matching condition takes the form 

(4.15) 

ASSASS
2 kkkkkkkk 

LLL .    (4.19) 

and  the phase matching condition is only met for those directions that comply with the 

relation 

SAS
2 kkk 

L
.         (4.20) 

It indicates that the direction of the stimulated anti-Stokes propagation is restricted to the 

surface of the cone with the axis parallel to the direction of the incident laser beam  L  (Fig. 

4.5). 

                                 
  

Fig. 4.5. Directions of propagation of the stimulated anti-Stokes scattering 

 

Why the phase matching condition, 0k , that is always met for the stimulated 

Stokes scattering, it is not automatically complied with the stimulated anti-Stokes scattering? 

It results from the fact that the phase of vibrating molecules is defined by the more intense 

Stokes scattering.  

To sum up, intense light of the frequency 
L

  can cause intense stimulated Raman scattering: 

Stokes wibS   L  and anti-Stokes wibAS
 

L . As a result of photon 

interaction with matter, the energy exchange via optical phonons (or vibrations) takes place 

leading to the formation in a medium the third-order polarisation, 
   

lkjijkl
EEEP

33
 , that 

consists of the components changing with the frequency Swib
 

L , 

wibS
 

L  and wibAS
 

L . The polarisation components generate new 

waves of the frequencies 
S

  and 
AS

  known as the stimulated Stokes and anti-Stokes 

Raman scattering. The phase matching condition is met in all directions for the Stokes 

radiation  0k , so the scattered light is emitted in all directions. The anti-Stokes 

stimulated scattering is observed in directions, 
AS
k , for which the phase matching condition 

ASS
2 kkk 

L  is met. 

 

The stimulated Raman scattering (SRS) produces both bad and beneficial effects in 

fibers. The essential feature of the stimulated Raman scattering is the optical Raman gain. If 
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in a medium, in which the stimulated Raman scattering occurs, two beams are guided: a beam 

called pumping beam of 
L

  frequency and the additional one of the lower frequency equals 

to the Stokes component frequency wibS   L  (propagating signal  beam) the latter 

beam is significantly amplified. Therefore, we can expect the stimulated Raman scattering can 

be employed  to amplify the  input signal pulse in an optical fiber in a similar way  as it 

undergoes in EDFAs, erbium-doped fibre amplifiers. The essential difference is the 

amplification of the propagating  beam via the stimulated Raman scattering and the 

occurrence of the bathochromic shift (the Stokes component) vibl  S  with respect 

to the pumping beam, where vib  denotes vibration frequency of the molecules of the fiber 

material (glass or dopants).  

The Raman stimulated scattering in optical fiber can amplify weak propagating signal 

of frequency 
s

  if the intense light is simultaneously pumped into a fiber with the frequency 

L
 corresponding the amplification Raman spectrum vibl  S . Maximum of  

amplification occurs only if the difference  vibl  S  equals to the maximum of the 

amplification Raman spectrum vib . The amplification spectrum corresponds to the Raman 

vibration band of the fiber material. For the glass optical fiber vib equals to 440 cm
-1

 (13.2 

THz) and refers to the vibration of fused silica, SiO2. The vibrational band of the fused silica  

is broad (around 5 THz) since glass is an amorphous, non-crystalline material and the 

spectrum is inhomogenously broadened. The amplification occurs when a threshold value for 

the stimulated Raman scattering is achieved.  

 

             
 

Fig. 4.6. Raman spectrum of melted silica SiO2. The coefficient profile of the Raman 

amplification, gR, pumping beam wavelength p=1550 nm [7]. 

 

Let us consider an interaction between the pumping and the Stokes beams of the 

intensities pI  and sI , respectively. Let us assume that they represent continuous waves CW 

(or quasi-CW). The intensities of the beams can be characterised by the following system of 

equations 

ssspR
s IIIg

dz

dI
        (4.21.a) 

ppspR

s

pp
IIIg

dz

dI





       (4.21.b) 

The term spR IIg  depicts an increase in the intensity of the Stokes beam, where gR refers to 

the spontaneous Raman scattering cross-section [8], (more precisely, imaginary part of the 
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third-order electric susceptibility  3

ijkl  in the equation (4.9)), s p  - coefficients describing 

loses in an optical fiber for the Stokes and the pumping beams. One can accurately derive the 

equations (4.21.a - 4.21.b) from the Maxwell equations but they can also be intuitively 

understood as phenomenological equations. It becomes particularly clear for the case when 

the loses in the equation (4.21.b) are neglected, then we can write 

0















p

p

s

s

z

II

d

d


        (4.22) 

This equation states that the total number of photons remains constant in the process of SRS. 

In order to achieve the pumping beam pI  intensity threshold value, the set of equations 

(4.21.a - 4.21.b) has to be solved. To simplify the case, let us neglect the first term in the 

equation (4.21.b)  

pp

z

p
I

d

dI
          (4.23) 

Solving the equation (4.23) and inserting to the equation (4.21a) we obtain 

SSSpR
z II)zexp(Ig

dz

dI
  0        (4.24) 

where 0I  denotes the intensity of pumping beam at the input, for z=0. 

Solving the equation (4.24) we get 

     LLIgexpILI seffRss  00        (4.25) 

where L denotes the length of an optical fiber, while effL  is an effective length of an optical 

fiber  

  
p

p

eff

Lexp
L






1
        (4.26) 

The equation (4.25) says that at  (z=0) where  the pumping beam is injected  the intensity of 

the signal beam is equal  0sI  and as a result of the stimulated Raman scattering is amplified 

to the value  LI s  when propagating along the length L.  Here we assumed that during the 

process of SRS the photons of the frequency   are generated. Indeed, SRS process amplifies 

all signals of the frequencies from the Raman band range (Fig. 4.6). Therefore the equation 

(4.25) should be substituted by the integration over whole Raman amplification band. 

      dLLIgexpLP seffpRs 




 0      (4.27) 

In order to solve the equation (4.27) the specific form of )(gg RR   has to be known, 

where   p . Since usually the relation is not known, )(gg RR   has to be 

expanded into Taylor series around the Stokes frequency S   and after substitution of 

the expansion we obtain  

    LLIgexpPLP seffRR

eff

ss   00       (4.28) 

where 

effs

eff

s BP 0          (4.29)  

  

2

1

2

22

1

0

2






















s

R

eff

eff

g

LI
B





       (4.30) 
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effB has the meaning of the effective Stokes bandwidth, and depends also on the pumping 

intensity and the fiber length L. The expression (4.29) can be treated as a good first-order 

approximation for estimation of the threshold power eff

sP 0 , which is defined as the power of 

the Stokes beam power equal to the pumping power at the end of a fiber of the length L. 

     LexpPLPLP pps  0         (4.31) 

where effAIP 00   while effA  denotes the effective surface of the optical fiber core defined 

by the equation: 

 

  

  














dxdyy,xF

dxdyy,xF

Aeff
4

2
2

        (4.32) 

For the Gaussian distribution of the beam the transverse area is  
2wAeff            (4.33) 

where w denotes the width of the Gaussian distribution. The width w depends on the type of 

the propagated mode and a radius a of the core and the core and the cladding refraction 

indices. Fig. 4.7 shows the  dependence of w/a on the normalized frequency discussed in 

Chapter 1 

2

2

2

1

0

~~ nn
a





  .        (4.34) 

      
 

Fig. 4.7. Dependence of w/a on the normalized frequency  

 

In the formula (4.34), the non-linearities generated by the high intensities of the fields of the 

stimulated Raman scattering has been taken into account by replacing  the core and the 

cladding refraction indices n1 and n2 by their  non-linear counterparts 2

1
~n  and 2

2
~n  in the 

formula (4.34). Therefore, within the nonlinear regime the nonlinear dielectric constants 

should be used 

      NLxx   11          (4.35) 

and as a consequence the nonlinear refraction index and the nonlinear absorption coefficient 
2

2 Ennn~   
2

E~         (4.36) 

where 
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  3

2
8

3
xxxxRe

n
n  ,   30

2
4

3
xxxxIm

nc



        (4.37) 

 

Fig. 4.8 describes the dependence of the refraction index of silica glass on the optical power. 

We can see that the changes are small, but for the great length of the optical fibers of the order 

of hundreds of kilometers this effect becomes meaningful. 

 

 
 

Fig. 4.8. Dependence of the refraction index of the silica glass on optical power. 

 

Typical values of W/m.n 220

2 1062   allow for the estimation of 210020 mAeff   

for nmp 1550 . Using the expression (4.28-4.31) allows us to write 

0

0

0 P
A

LPg
expP

eff

effReff

s 













        (4.38) 

where eff

sP 0  depends also on 0P  via the formula (4.29). 

Assuming that the Raman gain spectrum, Rg , takes the Lorentz shape we get [9] 

16
0


eff

eff

cr

R

A

LPg
          (4.39) 

Equation (4.39) allows deriving the threshold value crP0 above which the amplification 

phenomenon caused by the stimulated Raman scattering begins. 

The stimulated Raman scattering phenomena have been used in Raman amplifiers. 

Since 2000 almost all systems (long-haul, defined as 300  to 800  km and ultralong-haul 

– over 800 km) have been using Raman amplification substituting popular in nineties EDFA 

amplifiers. 

In typically applied configurations DFA (distributed fibre amplification) Raman 

amplification occurs at the end of the optical waveguide length, before detector or EDFA 

amplifier (Fig. 4.8). The pumping beam is inserted into an optical fiber through the coupler 

and propagates  in the direction opposite  to the direction of the signal beam. 
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Fig. 4.8. Configuration DFA used in optical fibers with Raman amplification  [3] 

 

Fig. 4.6 shows the Raman spectrum for fused silica (SiO2). It should be stressed that 

the maximum of the Raman vibrational band does not depend on the power of the signal 

beam. For fused silica, the Raman band of glass has the maximum at 13.2 THz (440 cm
-1

). 

This means, if we use 1550 nm as the pumping beam, the bathochromic shift of 111.5 nm of 

the amplified Stokes beam (1661.5 nm), vibp  S , will be observed. We will get the 

maximum of amplification for the same polarizations of the signal and the pumping beams. 

The Raman amplifier is an example of  benefits coming from the stimulated Raman 

scattering. However, SRS  may create also many negative effects in the fiber. Here, some of 

them will be selectively described. It arises from the nature of the Raman phenomenon - 

higher frequency waves diminish their power as a result of energy transfer to optical photons 

and intermolecular vibrations, and the new Stokes waves of lower frequencies are created. 

This means that in an optical fiber, irrespective of our will, new longer wavelength 

components appear. If the power of light does not exceed a threshold value Pth (for typical 

optical waveguides of the order of 1W), radiation of longer wavelengths occurs as the 

spontaneous Raman scattering of low power. When the threshold value is exceeded, the 

stimulated Raman scattering appears at the cost of rapid decrease of the signal power. As long 

as the optical transmission is a single-channeled TDM with one wavelength propagating, the 

stimulated Raman scattering does not disturb significantly the operation of the system, 

although it influences the generation of noises coming from the stimulated Raman scattering. 

The situation changes dramatically  in multi-channel broadband transmission (WDM). If two 

waves of frequencies andthatdiffer by vib vib  12 the power of the longer 

wavelength (signal wave) will increase at the cost of the power of the shorter wave 

pumping beam. This denotes that the channels of higher wavelengths will be amplified at 

the cost of the channels of lower wavelengths. It can lead to complete degradation of the 

multi-channel transmission system. 
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Fig. 4.9. Schematic spectrum for DWDM system that consists of six channels (six 

wavelengths) without the stimulated Raman effect. 

 

Fig. 4.9 shows the spectrum of six-channel DWDM system (six wavelengths) at 1550nm 

window without the stimulated Raman scattering. Fig. 4.10 shows the deformation of the 

spectrum by the stimulated Raman scattering effect. 

 

                                   
 

Fig. 4.10. Deformation of the spectrum for  six-channel DWDM system (six wavelengths)  by 

the stimulated Raman scattering effect. 

 

Fig. 4.10 shows  that the shorter wavelengths have significantly lower amplitudes due to the 

energy transfer to vibrations of the fused silica. The effect of mutual interaction of channels 

via SRS would be negligible only if the channels were separated by more than 13.2 THz 

corresponding to  the maximum of Raman spectrum (that corresponds to silica vibration of 

440 cm
-1

). If a beam of 1550nm is used as pumping beam, the amplified Stokes beam 

vibp  S  appears for wavelengths 113.6nm longer - at 1663.6 nm that corresponds to 

the channel spacing of 13.20 THz.  

Figure 4.11 illustrates the influence of SRS on the binary signal transmission. The Fig. 

4.11a shows a sequence of bits in two channels without the  SRS effect. Fig. 4.11b shows 
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binary signals in both channels disturbed by SRS. It should be noticed that only when the 

value of a bit in any channel equals zero, SRS does not cause changes. If both channels emit 

nonzero bits, the power of the  channel (2) increases at the cost of the power of the channel 

(1). In the  channel (1) the power of some bits decreases that leads to lower signal-to-noise 

ratio and in consequence to the increase of the bit error rate. 

 

 
 

Fig. 4.11. Influence of SRS on transmission of binary signals, a) binary sequences emitted in 

channels 1 and 2 without SRS, b) binary sequences emitted in channels 1 and 2 and modified 

by SRS effect. 

 

In order to restore the quality of the DWDM multi-channel transmission distorted by 

the stimulated Raman scattering effect (Fig. 4.10), the amplitudes of channels that transferred 

the energy to optical photons and vibrations, should be strengthened. It can be done applying 

Raman optical amplifiers. Fig. 4.8 shows DFA configurations of the Raman optical amplifier, 

with  the backward pumping. In another configuration, the pumping laser and circulator are 

used (Fig. 4.12). The circulator injects light in opposite direction to the signal beam 

propagation. 

                

Fig. 4.12. Typical Raman amplifier configuration 

Another solution is pumping in the same direction as the propagation of the signal beam 

(forward pumped Raman optical amplifier) with the pumping beam injected at the beginning 

of the optical tract in the neighborhood of the transmitter. The schematic spectrum from Fig. 

4.10  after Raman amplification is presented in the Fig. 4.13. It can be noted that the pumping 
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beam power, 1535 nm, is much higher than the power of the components of the stimulated 

Raman scattering. 

 

Fig. 4.13. Schematic representation of the Raman optical amplifier spectrum 

When the Raman amplifier is used with the pumping light of 1535nm, all channels are 

amplified by about 10 dB (Fig. 4.14) and the amplitudes are again equal to each other 

(compare with Fig. 4.10). It happens at the cost of the energy of pumping beam at 1535nm, 

which is considerably lower (Fig.4.14) in comparison with  situation in the Fig. 4.13. 

 

Fig. 4.14. Schematic representation of the spectrum of an example DWDM system that 

consists of six channels (six wavelengths) after amplification in the optical Raman amplifier; 

pumping at 1535nm 

4.4.  Stimulated Brillouin scattering 

The Brillouin scattering and the stimulated Brillouin scattering can formally be 

described in a similar way as  the Raman scattering. The  wave of 
L

  frequency can cause the 

Brillouin scattering as the Stokes component of frequency faS   L , where fa  

denotes a frequency of an acoustic phonon. As a result of interaction between the matter and a 
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light photons the energy exchange occurs via acoustic photons leading to the third-order 

polarization of in medium,  
   

lkjijkl
EEEP

33
 . The fundamental difference lies in the 

interaction of light photons with acoustic phonons in contrast to the Raman scattering where 

the interactions between light photons and molecular vibrations occur. The acoustic phonons 

are of much lower frequencies than optical photons. The frequency of the acoustic phonon is 

expressed by the following formula 




 s

fa

n4
         (4.40)   

where s  denotes the speed of sound in optical waveguide, n – refraction index. One can 

estimate the typical acoustic frequency from (4.40) which is  equals to 69 GHz at  wavelength 

of 1550nm.  

The Brillouin scattering becomes the stimulated Brillouin scattering when the 

pumping threshold value is exceeded to generate the Stokes amplification. The bandwidth of 

the Brillouin amplification is much narrower than that of the Raman band and is equal  

approximately around B =20 MHz for 1550 nm. For comparison, the Raman amplification 

band is broad and equals around 5THz. This means that the highest amplification (the lowest 

threshold value) occurs for the sources of spectral bandwidth smaller than 20MHz. Indeed, the 

threshold value strongly depends on the spectral bandwidth of a light source. The more 

monochromatic source is, the lower the SBS amplification threshold is. For the very narrow 

spectral lines of 10MHz, the threshold value ranges from +4dBm to +6dBm for 1550nm. The 

Fig. 4.15 presents the dependence of threshold value on spectral line width of light source 

L . The broadening of the spectral line of a light source causes the reduction of the 

stimulated Brillouin effect. 

L

B
Bgg




         (4.41) 

Calculations similar to those we carried out for the stimulated Raman scattering crP0  threshold 

value (4.38) allows to write [10] 

effB

effcr

Lg

A
P

21
0          (4.42) 

Using the following parameters: effL =22 km, 
250 mAeff  , W/mgB

11105  , we get 

the threshold value for the stimulated Brillouin scattering crP0 1 mW. For such a threshold 

values the SBS is present and is the main nonlinear process in optical waveguides. The 

threshold value does not depend on the number of channels; it is present both in single (TDM) 

and multi-channel (WDM) transmission systems.  
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Fig. 4.15. The dependence of the threshold value on spectral line width. 

Although the mechanisms of simulated Raman and Brillouin scattering are formally similar, 

there exist a few fundamental differences. First, the scattering amplification coefficient, 

W/cmgB

9104  , is twice as high as the corresponding coefficient for Raman 

scattering. It means a power of a few mW is enough for SBS effect production contrary to 

SRS where a power of above 200 mW causes SRS amplification. Second, contrary to Raman 

scattering, which propagates in both directions in an optical waveguide, Brillouin scattering 

propagates only in reverse direction in single-mode optical waveguides. Reverse process of 

Brillouin scattering degrades the transmitted signal. SBS phenomenon is very sensitive to the 

modulation of light. The higher the modulation speed, the broader spectrum of source L , 

so the lower amplification Bg  (and higher the threshold value) that results from the equation 

(4.41) and allows for significant reduction of SBS. 

 

Fig. 4.16. Scheme of the influence of modulation on the threshold value of SBS, a) optical 

signal without modulation, b) optical signal with modulation. 

4.5. Four-wave mixing (FWM) 
The four-wave mixing is nonlinear process of the third order. This process  is 

described by the third term in the polarisation expression 

 
     

lkjijklkjijkiji EEEEEEP 321       (4.43) 
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As it has been shown in the chapter 3, the stimulated Raman scattering can be regarded as a 

special case of four-wave interaction 

3214
         (4.44) 

0
4321
 kkkkk       

Also the third harmonic generation is a special case of FWM, which appears when 

321           (4.45) 

and we obtain 

11114 3  .      (4.46) 

In case of the single-channel optical transmission, the generation of the III harmonic is 

not  a problem, since this nonlinear component can easily be filtrated, because it is in the 

spectral region significantly distant from the transmitted signal of 1  frequency. However, in 

the multi-channel systems with slightly different channel frequencies, the four-wave mixing 

leads to various combinations and some of them precisely overlap with the signal beam and 

the filtration becomes impossible. It is clear that the four-wave mixing is disadvantageous in 

transmission. Let us take into account three channels of wavelengths3). Let 

1=1551.72nm, 2 = 1552.52 nm, and 3 = 1553.32 nm. The four-wave mixing process can 

lead to generation of signal of the following wavelengths 

 

3=1550.92nm 

3=1552.52nm 

= 1554.12 nm  

3=1552.52nm 

2=1550.12nm 

21=1554.92 nm 

1=1554.12nm 

21=1553.32nm 

22= 1554.12 nm  

 

Three of them are alike the signal wavelengths (Fig. 4.17), whereas the rest of six are 

different enough to filter them. 

 

 
 

Fig. 4.17. Illustration of four-wave mixing phenomenon 

 

The number of combinations of the interfering beams increases with the number of channels 

as ½ • (N
3
-N

2
) and is presented in Fig. 4.18. 
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Fig. 4.18. The dependence of the number of interfering combinations as a result of the four-

wave mixing on the number of channels. 

 

The effectiveness of the four-wave mixing depends on the channel’s frequency distance and 

dispersion characterised by the dispersion coefficient D  that was discussed in chapter 3. The 

smaller the dispersion, the higher the four-wave mixing efficiency is. Therefore, in case of 

typical optical waveguides operating at 1310nm in the second window where D=0, the mixing 

is very efficient, whereas at 1550nm in the third window D=17 ps/nmkm and the four-wave 

mixing drastically decreases. For the new generation of dispersion shifted, low but non-zero-

dispersion of the order of 1-5 ps/nmkm occurs to reduce the four wave mixing. The 

phenomenon is shown in Fig. 4.19. 

 

         
 

Fig. 4.19. Dependence of the four-wave mixing on the channel spacing 

 

4.6.  Self-phase modulation (SPM) 

 
As an optical pulse travels down the fiber, the leading edge of the pulse causes the refractive 

index of the fiber to rise, resulting in a blue shift. The trailing edge of the pulse decreases the 

refractive index of the fiber causing a red shift. These red and blue shifts introduce a 

frequency chirp on each edge which interacts with the fiber dispersion and results in pulse  

broadening. 
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Rys.4.20. Pulse broadening in a fiber as a result of a frequency chirp  

 

There is another effect which causes temporal broadening of an ultrashort pulse called 

the self phase modulation (SPM). This effect results from the fact that the nonlinear  index of 

refraction n() depends on the light intensity I  

 

)()()()( 20 tInnn       (4.47) 
2

)( tetI        (4.47a) 

When an ultashort pulse propagates through a nonlinear material the local index of refraction 

increases. The temporal center of the pulse, which is of course more intense, experiences a 

larger index of refraction than the leading and trailing edges. Therefore, the central part of the 

pulse slows, the leading edge speeds ahead, while the trailing edge catches up. 

The nonlinear refraction index    tIn 2  leads to the time dependence of the phase  

       
L

C

tInn
L
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n
L 


 20 

                                                           

with its nonlinear part  

   
L

C

tIn
NL 


 2                  (4.47b) 

The time dependence of NL  results in the time dependence of the frequency along the 

temporal puls and differs from the central frequency 0  (Fig. 4.20).  When the puls 

propagates in a fiber, its leading edge (with increasing intensity) experiences the frequency 

shift toward red wavelengths. In contrast, the trailing edge (or falling edge) with decreasing 

intensity experiences the frequency shift towards blue wavelengths. To understand, why it 

happens, one should be notice that the change of the frequency with respect to the central 

frequency   0 T  is given by 

 
T

T NL







 .               (4.47c) 

Minus in the relation comes from the choice of the sign for the wave packet  tiexp 0 , 

whereas T denotes time in the reference system moving with the group velocity of the wave 

packet maximum   

g

tT


2
                  (4.47d) 
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From (4.50) one can see that for the leading edge we have  0




T

NL
 (because the nonlinear 

refraction index    tIn 2  increases) and    0T , which denotes the  red shift). In 

contrast for the trailing edge we have 0




t

NL
 i    0T  and the blue shift. As we can 

see from (4.50) the automodulation SPM generates new frequencies from the range 

0  T   and results in spectral broadening of the puls. The time dependence of the 

frequency shift    is called the frequency chirping. When a puls propagates along the fiber 

NL  increases( because the distance z increases (4.49), and the frequency chirp    also 

increases. It indicates that with the distance new frequencies are generated in the propagating 

puls which becomes more and more spectrally broadened.  This phenomenon is of spectral 

broadening resulting from the nonlinearity of the refraction index (    tIn 2 ) is known as  the 

automodulation SPM. The spectral broadening leads to the temporal pulse broadening. SPM 

effect on the pulse duration seems to run counter to accepted ways of thinking: the broader the 

pulse in the frequency domain, the shorter the pulse in the time domain. To understand this 

apparent discrepancy with the Fourier transformation we have to stress that the new 

frequencies created by SPM are not synchronized. Although they are produced under the 

original pulse envelope, they are not transform-limited any longer as the pulse propagates 

  

 It should be remembered that to the SMP effect we must add the group velocity 

dispersion efect  GVD described in chapter 3. In medium exhibiting positive  „normal” efect 

GVD (GVD>0) red spectral components travels faster than blue components. Each of them 

undergoes additional dispersion resulting from the automodulation. It denotes that the red 

components on the leading edge becomes further shifted to red (and blue) and the blue 

components on the trailing edge are further shifted towards blue (and red). 

  

To sumarize, the automodulation SMP, particularly when combined with positive GVD, 

leads to both spectral and temporal pulse stretching 

 

The Fig. 4.21 shows the temporal phase change NL  resulted form self-phase modulation (a) 

and frequency chirp for Gaussian (m=1) and super-Gaussian (m=3) temporal pulse. 
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Fig. 4.21. Temporal phase change NL  resulting from self-phase modulation (a) and 

frequency chirp for Gaussian (m=1) and super-Gaussian (m=3) temporal pulse [15] 

 

 

As a consequence of the phenomenon presented in the Fig. 4.21, temporal broadening of a 

pulse appears. The Fig 4.22 demonstrates the dependence of the self-phase modulation on the 

pulse broadening for the following cases (a) the input pulse without chirp, (b) the same pulse 

after distance L in the optical fiber, (c) the input pulse with chirp, (d) the same pulse with 

input chirp after distance L in the optical fiber. 

 

 

 
 

Fig. 4.22. Dependence of the self-modulation on broadening of the temporal pulse (a) input 

unchirped pulse (b) the same pulse after the distance L in optical fiber (c) input chirped pulse, 

(d) the same pulse with input chirp after the distance L in optical fiber 
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When the intensity of the pulse increases, the temporal pulse not only broadens but also gains 

an oscillatory character. The oscillatory character can be understood when we take into 

account  the changes of frequencies during the pulse durations (Fig. 4.21). 

 

      
 

Fig. 4.23. The shape of time pulses experimentally observed in case of quasi-Gaussian 

input pulse after travelling the distance of 99 m in an optical waveguide ( a=3.35 m , 

V=2.53). Various shapes correspond to the various maxima of the phase shift max  that is 

proportional to the pulse power, time duration of the input pulse ps900   [11]. 

             
 

Fig. 4.24. Comparison of influence of  SPM on the time shape of pulse for the input pulse (a) 

Gaussian and super-Gaussian (b) and  for the power P0 corresponding to maximal phase shift 

 54.max   [12]. 
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Fig. 4.25. Comparison of influence of SPM on the time shape of pulse for the input pulse with 

positive GVD (C=5) (a) with the negative GVD (C=-5) and for the power P0 corresponding to 

the maximal phase shift  54.max      [13]. 

 

If an input pulse is accompanied by the initial chirp the temporal pulse shows even more 

spectacular character (Fig. 4.25) with clear  oscillatory character for the positive GVD (C=5). 

Contrary, if the input pulse shows negative dispersion (C=-5), the oscillatory character decays 

in the middle of the pulse leaving only two pulses on the edges.  

However, the SPM effect can also play a positive role. It can be used to compress 

ultrafast pulses. Two general techniques are used to compress ultrafast pulses via SPM and 

GVD combination: a) the grating-fiber method, b) the soliton-effect compressor. The first 

method is used in the visible and the near infrared ranges. The second method is used in fiber 

networks. The principle of the grating-fiber method is presented in fig. 4.26. First, recall that 

for most wavelengths, materials show so-called “normal dispersion” (GVD>0) , where the 

index of refraction n increases as  decreases (Fig. 3.10). However, for the wavelengths that 

are close to the maximum of the absorption band, the dependence of the index of refraction on 

wavelength  changes - the index of refraction n increases as  increases (Fig.3.11). At the 

center of absorption, the GVD is zero. The material shows so-called “anomalous dispersion” 

close to the maximum of the absorption, and the pulse exhibits a negative GVD, with the 

bluer components of the pulse traveling faster than the redder components. The grating-fiber 

method is used for VIS and near-IR pulses that are far from the absorption band of the fiber 

material. Let the input pulse represents the normal dispersion region with a positive GVD. 

During the propagation in the fiber the pulse is affected both by SPM and GVD. The resulting 

pulse has its spectral width significantly increased with a significant positive chirp, which is 

almost linear. Then, the positively chirped pulse passes through an external pair of gratings, 

which are designed to produce negative GVD. The negative GVD designed pair of grating 

offset the positive chirp from the positive GVD and SPM by making the optical path length of 

the redder components substantially greater than the path for the bluer components. 
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Therefore, the trailing bluer edge of the pulse catches up to the leading redder edge, and all 

components begin to travel at the same velocity. As a result, the output pulse exhibits zero 

GVD, and is compressed to less than its initial value. 

The soliton-effect compressor is used for radiation close to the absorption band of the 

fiber material. The  silica fiber has the absorption (and zero GVD) at 1.31 m. Therefore, for 

radiation close to the maximum the fiber exhibit anomalous dispersion, and the pulse 

propagating across the fiber experience a negative GVD. The soliton-effect compressor 

consists simply of a piece of fiber of properly chosen length to balance the positive chirp 

introduced by SPM with the negative chirp introduced by the fiber. These two effects together 

can offset each other in a properly chosen fiber length and the result is a compressed pulse 

that exhibits zero GVD. This pulse is called an optical soliton. Such a pulse is stable in shape, 

power and duration over extremely long distances and can be transmitted in 

telecommunication optical fibers without distortion. 

 

                   
 

Fig. 4.26. Typical setup for the grating-fiber compression 

 

These effects are present both in solid-state lasers based on a crystal medium as well 

as in fiber lasers with a silica glass as a laser medium. The silica glass has a symmetry center 

of inversion that rules out the second-order nonlinear effects, but the third order effects like 

SPM still exists. SPM effect in fiberoptic systems is smaller than in solid-state lasers, because 

of significantly smaller intensities that are employed. 
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Fig.4.27. SMP and GVD effects on the temporal pulse shape and duration, a) 

(GVD<0; n2 =0, SMP=0), b) (GVD=0; n2 >0, SMP>0),c) (GVD<0; n2 >0, SMP>0) 

Fig. 4.27 summarizes the discussion on the SMP and GVD effects and their inluence on the 

temporal pulse shape and duration 

a) when the non-chirped input pulse propagates in the medium exhibiting the negative 

GVD and no SMP effect (GVD<0; n2 =0 from eq. (4.47) the pulse at the end of the 

fiber  becomes negatively chirped with the shorter wavelengths (B components in Fig. 

4.27)  traveling faster than the longer spectral components (R components) of the 

pulse, 

b)  when the non-chirped input pulse propagates in the medium exhibiting no  GVD 

dispersion, but SMP effect exists (GVD=0; n2 >0 from eq. (4.47) the pulse at the end 

of the fiber shows blue shift (R components) for the raising edge of the pulse and red 

shift (B components) for the trailing edge, the pulse shows frequency chirp, but the 

shape remains unchanged,  

c)  when the output pulse from the case b) will be employed as the input pulse in the case 

a), the pulse undergoes narrowing, 

d)  when the non-chirped input pulse propagates in the medium exhibiting negative   

GVD dispersion, and SMP effect exists (GVD<0; n2 >0 from eq. (4.47) the pulse at the 

end of the fiber can preserve their shape and duration (solitons) or change the shape. 

Both cases- broadening or narrowing can be obtained depending on competition 

between GVD and SMP effects. 

 

4.7.  Cross phase modulation (XPM) 
 

 

The cross-phase modulation (XPM) is very similar to SPM except that it involves two 

pulses of different frequency, whereas SPM involve the pulses of identical frequency. 

In XPM, two pulses travel along the fiber, each changing the refractive index 
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   tInL   as the optical power increases. If these two pulses happen to overlap, they 

will introduce distortion into the other pulses through XPM. In contrast to SPM, the 

fiber dispersion has little impact on XPM. Increasing the fiber effective area reduces  

XPM and all other fiber nonlinearities. 

 

 

4.8.  Theoretical description of GVD phenomenon and self-phase 

modulation SPM [14,15] 

4.8.1.  Nonlinear Schrodinger equation 

Polarization controls matter-radiation interaction, therefore it plays significant role in 

description of phenomena occurring in optical waveguides. 

Polarization operator for N molecules is described with the equation  

   
m

mPP rrˆ

         (4.49) 

where Pm(r) polarization of  molecule m 

       


 
1

0

ˆˆ mmmmmmm RruRRrqduP rr

    (4.50)  

 

Here, mr̂  is the position operator, qma is the electric charge of particle  (electron or 

nucleus) belonging to molecule m, Rm is a molecular center of mass (or charge), the u–

integration is a number integration that ensures the correct coefficients of the multipolar 

expansion of the polarization operator.

  

Most commonly we shall invoke the dipole approximation where we keep only the first 

electric term in the multipolar expansion. The equation (4.50) is then simplified to the form 

 

   m

m

mP Rrr - ˆ         (4.51) 

where m is the dipole moment operator for the m
th

 molecule and is given by 

  


 mmmm Rrq ˆ .        (4.52) 

The  mRr   is the Dirac delta function 

   mm

m
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RfdrRrrf

Rr

Rr







 )(

0 .     mRr
 

   (4.53) 

The electric field of the laser  t,rE  interacts with the matter through the polarization 

)(rP . The radiation-matter interaction is given by the semiclassical Hamiltonian 
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    rrr dPt,E)t(H int .
        (4.54) 

The radiation-matter interaction described by eq. (4.54) can be simplified if we assume the 

dipole approximation (eq. (4.51)). The dipole approximation denotes that a single particle has 

a size much smaller than the optical wavelength and the particle may be represented by a 

point dipole. When the dipole approximation is made we can focus on the temporal response 

of a single particle to the electric laser field and the Hamiltonian Hint from (eq.( 4.54)) can be 

written as 

 

 VrE ttH ,)(int  ,         (4.55) 

with the dipole operator 

 

  


 rrV q          (4.56) 

where the sum runs over all the electrons and nuclei a with charges qa at positions r . 

In the semiclassical description of the interaction the material system is treated quantum 

mechanically whereas the transverse radiation field  t,rE  is considered classical. 

In the Schrödinger picture, the semiclassical approximation results in the Maxwell-

Liouville equations: 

 

     tP
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tE ,
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2
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


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


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
r                      (4.57) 

    )(ˆ, tPTrtP rr                          (4.58) 

 )t(,H
i

t

)t(
T 









                        (4.59) 

 

 

The dynamics of the system is calculated by solving coupled equation for the electric field 

and the polarization. As we said, the optical polarization  tP ,r  is the primary goal of any 

theory of optical spectroscopy because it plays a key role for interpreting optical 

measurements. To calculate the polarization  tP ,r  which is a physical observable we have to 

average over the statistical ensamble (eq. (4.58)) with the nonequilibrium density operator 

)(t  by taking a trace Tr. The density operator )(t  can be obtained by solving the Liouville 

equation (4.59) where HT is given by 

intHHHT               (4.60) 

and describes the Hamiltonian H of the molecular system (matter) and the Hamiltonian of 

interaction matter-radiation Hint given by eq. (4.54). 

Unfortunately, the equation (4.59) is easy to solve only for the thermal equilibrium 

(t=t0) when the electric field of the laser does not disturb the system (Hint=0) and the canonical 

density operator is given by 

   
 
 HexpTr

Hexp
t0









        (4.61) 

where   1

BTk


 , k is the Boltzman constant, and T is the temperature. 

For nonequilibrium situation, when the laser beam begins to interact with the molecular 

system, the eq. (4.59) is not easy to solve. Usually, a perturbative order by order expansion of 

the response in the fields is applied which indicates that the time-dependent density operator 

can be expanded in powers of the electric fields 
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 )()()()()( )3()2()1()0( ttttt       (4.62) 

 

where  (n)
 denotes th n

th
 order contribution in the electric field,  (0)

(t) =  (-). 

Upon the substitution (4.62) into (4.58) we obtained the Taylor expansion of the polarizaion 

in powers of the radiation field  tE ,r  

         tPtPtPtP ,,,, )3()2()1(
rrrr      (4.63) 

As we explained in chapter 5 this expansion corresponds to the linear and nonlinear optical 

processes. The linear term P
(1)

 is responsible for linear optics, P
(2)

 is responsible for second-

order processes such as SHG or frequency sum generation, P
(3)

 is the third-order polarization 

that is responsible for THG and many other processes that is measured by a broard variety of 

laser techniques such as four-wave mixing, pump-probe spectroscopy or polarization-gating. 

It can be shown 
9.6

 that the n
th

 order polarizability  tP ,)n(
r  is expressed by the n

th
-order 

nonlinear response functions S
(n)

 that provide the complete information about the time 

evolution of the system measured by the optical spectroscopy of the n
th

 order and is given by 
9.6

: 
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where the response function S
(n)

 is given by 
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   (4.65) 

 

Here )(  is the Heavyside step function [ 1)(   for t>0 and 0)(   for t<0], 

  0   represents the equilibrium density operator, which does not evolve with time 

only when the molecular Hamiltonia H does not interact with electric field of the laser. The 

operator V(t) from eq. (4.65) can be expressed as 

 





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


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






  H

i
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i
V


expexp)(        (4.66) 

 

and represents the dipole operator from eq. (4.56) in the interaction picture. One can see from 

eqs. (4.64-4.66) that the polarization response P
(n)

 is expressed by the n-time points 

correlation functions. 

For the linear response P
(1)

 that controls all linear spectroscopy optical measurements 

(for example absorption, spontaneous Raman scattering) the response function S
(1)

 is 

simplified to the from 

 

          )0(,111

)1( VtVt
i

tS


      (4.67) 

and represents well known two-points correlation functions. These functions describe 

dynamics of vibrational relaxation in IR and Raman spectroscopy through the vibrational 

correlation function )0()( QtQ  and dynamics of reorientational relaxation. The higher-order 

response functions are a little more complicated, but at some approximations they can be 
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factorized and expressed as a product of two-time point correlation functions. The exact form 

of various responses for a specific nonlinear spectroscopy, including pump-probe, 

polarization-getting, echoes, coherent Raman the reader can find in Mukamel’s book [14]. 

 

The equation (4.57) simplifies to the following wave equation 
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r,r,r,
r,    (4.68) 

where )t(PL r,  and )t(PNL r,  are linear and non-linear polarization, accordingly, so )t(PL r,  

is the first term in the (4.4) expression and )t(PNL r,  includes all remaining terms. 

Let us assume that electromagnetic wave is quasi-monochromatic, so its spectral width   is 

much smaller than frequency of the centre of wave packet 0  ( 10  / ). This 

approximation is met for pulses of duration ps.100  , since the frequency of centre is of 

the order of s15

0 10 . 

It is convenient to separate the fast varying part 0  and slowly varying with time the pulse 

envelope (slowly varying envelope approximation) and put down a wave as  

 

      .c.ctiexpt,Ext,E  0
2

1
rr


      (4.69) 

and  

      .c.ctiexpt,Pxt, LL  0
2
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rrP


      (4.70) 

      .c.ctiexpt,Pxt, NLNL  0
2

1
rrP


     (4.71) 

where x


 is the unit polarization vector in x direction. Expressing polarization through the 

electric susceptibilities of the appropriate order in time domain  /)(

xx tt 1  and 

 321

3 tt,tt,tt)(

xxx   we obtain 
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           (4.72.b) 

and using (4.69) we get 
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where )(

xx
~ 1   and  0 ,E

~
r  denote the susceptibility and the electric field in the frequency 

domain after the Fourier transformation. We express  t,PNL r  in the similar way. Generally, 

the response functions  321

3 tt,tt,tt)(

xxx   are complex function of time. The nonlinear 

response of the system can be simplified significantly if we assume that the response is 

immediate. It is the drastic simplification because it is only electron polarization that is 
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immediate, vibrational degrees of freedom related to oscillations of molecule nuclei are much 

slower and the corresponding  response of nuclei is not immediate after application of pulse of 

electric field. Obviously, this approximation can not be applied for description of the 

stimulated Raman scattering, because these are vibrations which decide about the Raman 

phenomenon. However, in first approximation, when we discuss the influence of pulses of 

time duration ps.100   and we are not concerned of Raman effects, we can use that 

approximation. Then, the response function can be written 

  )tt()tt()tt(tt,tt,tt )(

xxx

)(

xxx 321

3

321

3      (4.74) 

where )tt( 1  function is the Dirac delta function (4.53) 

The equation (4.72.b) takes the form of 

 

         t,t,t,t,NL rErErErP  3

0       (4.75) 

 

and if we use (4.71) we obtain 

 

   t,Et,P NLNL rr  0         (4.76) 

 

where NL  denotes nonlinear contribution to dielectric constant 

    23

4

3
t,ExxxxNL r          (4.77) 

After substitution (4.69) - (4.71) to (4.68) we obtain the Helmholz equation 
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rr      (4.80) 

To derive the Helmholtz equation for the nonlinear regime, additional assumption of NL  

=const was needed, which is not generally valid due to the dependence on the field intensity. 

Let us assume that in the first approximation that due to slowly varying envelope 

approximation the approximation NL  =const employed in solving (4.68) is acceptable. Like 

in the linear approximation, the real and the imaginary part of dielectric constant depend on 

refraction coefficient n~  and absorption coefficient ~   
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In the nonlinear regime the refraction coefficient n~  and the absorption coefficient depend on 

field intensity and usually they take the form 
2
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Applying the method of variables separation, which we have already used in chapter 1 in 

order to solve the Helmholtz equation for the linear case, we can write the intensity of the 

field  0 ,rE
~

 as a product of the field component  y,xF  in perpendicular plane to the 

propagation of wave, the component of slowly varying envelope in the z direction 

 0 ,zA
~

 and the fast varying component of  ziexp 0  

       ziexp,zA
~

y,xF,rE
~

000        (4.84) 

 

where 0  is the wave vector (we called it the propagation constant in chapter 1) and is the 

first term in Taylor series expansion 
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Substituting (4.84 ) into Helmholtz equation (4.78) we obtain 
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We can determine the wave vector 
~

 from the equation (4.86) analogously to the method 

shown in chapter 1, where we described the propagation of modes in optical waveguides. 

Using (4.81), we can approximate  the dielectric constant by 

  nnnnn  222
        (4.88) 

where n  is a nonlinear term of the refraction index  and it is expressed by the equation  
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The equation (4.86) can be solved using the first-order perturbation theory. Namely, if 
2n , the equation (4.86) is a solution of F(x,y) for the mode distribution of HE11 in a 

single-mode optical waveguide that was described in chapter 1.  Having solution of the zero-

order, F(x,y), we insert the perturbation of nn2  to the equation (4.86) and solve it using the 

first-order perturbation method  
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One can calculate E(r,t) from the equation (4.69) and polarizations of )t(PL r,  and )t(PNL r,  

from (4.72a) via substitution 

         c.ctziexpt,zAy,xFxt,  00
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where A(z,t) is the inverse Fourier transform of ),z(A
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0   can  be derived from the equation (4.87) that can be written as 
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 is substituted by )
~

( 002   . 

In order to transform  t,zA  to the time domain, the inverse Fourier transform should be 

applied, (4.93), for both sides of (4.94) that leads to 
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Using (4.89) in (4.91) we can calculate   and insert it to (4.95). Finally, we get time-

domain wave equation 
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This equation is known as the nonlinear Schrödinger equation (NLS) and plays a significant 

role in description of GVD effects and nonlinearity of optical waveguides. 

 

that includes the following effects: 

- losses in optical waveguide – term A
2


, 

- group velocity of the centre of pulse - 
t

A




1 , 

- dispersion of the group velocity GVD - 
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- nonlinearity of optical waveguide AAi
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Typical values of the parameters in equation (4.96) in standard glass single-mode optical 

waveguides for 1.5 m : 
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W/m.n 220

2 1062   ; 210020 mAeff  ;  

km/W 1101  ; km/ps2

2 20  

 

4.8.2.  Inclusion of the higher order nonlinear effects in the nonlinear 

Schrödinger equation  
 

 Despite its usefulness for description of light propagation in optical waveguides for 

pulses longer than 1ps, the Schrödinger equation (4.96) is insufficient for characterisation of 

nonlinear phenomena such as the stimulated Raman scattering (SRS), the stimulated Brillouin 

scattering (SBS), the self-phase modulation (SPM), the four-wave mixing. Furthermore, the 

inclusion of the third term, 3 , in Taylor expansion (4.85) is occasionally necessary.  

 Now, we will show the methods that include these  effects.  Generally, the response 

functions  321

3 tt,tt,tt)(

xxx   are complex function of time. As we have shown in the 

previous chapter, the nonlinear response of a system can significantly be simplified if the 

immediate response is assumed 

 

  )tt()tt()tt(tt,tt,tt )(

xxx

)(

xxx 321

3

321

3      (4.99) 

 

This is the drastic simplification since only electron polarisation is immediate, vibrations of 

molecule nuclei are much slower and the corresponding response to the applied electric field 

is not immediate This approximation definitely cannot be used for description of the 

stimulated Raman scattering, since these are vibrations that decide on the Raman scattering. 

The phenomenon can be included by the response function R [16] 
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where  1ttR   is a nonlinear response function, normalized so that 




dt)t(R =1. The 

expression (4.100) is only correct for non-resonance conditions. 

Substituting (4.100) to (4.72b) we get 
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Applying analogous procedure as we employed in chapter 3, one can show [17] that in the 

frequency domain the equation similar to the Helmholtz one can be derived 
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where  1 R
~

 is the Fourier transform of the response function of  1ttR  . Treating the 

right-hand expression as a perturbation, we can derive the expression for the mode 

distribution, F(x,y), and for the wave vector  
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where    is a perturbation, but it is not expressed by formula (4.91). Defining slowly 

varying function A(z,t) in the same way as  in the equation (4.92) we get [17] 
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(4.104) 

The equation (4.104) is valid not only for the slowly varying envelope approximation used 

before,  but also for the pulses as short as several optical cycles. 

The response function,  tR , can be written as follows 

 

       thftftR RRR  1        (4.105) 

 

where the first term describes immediate polarisation from electronic  contribution, and the 

second term, Rf  , depicts contribution of polarisation coming from vibrations. The function of 

 thR  is connected with the Raman amplification described in chapter 4.3. 
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where Im corresponds to the imaginary part of the Fourier transform Rh
~

 of the response 

function of  thR . The real term can be derived from the imaginary one using Kramers-

Kronig relation [18]. Applying various models for vibrations one can derive the analytical 

form of the  thR . Below, the form of  thR  for dumped oscillations is presented [19] 
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The equation 4.104 can be simplified if we assume that pulses are short ( ps50  ), however 

noticeably longer than the time interval of just few optical cycles ( fs100  ). Then 

expansion into Taylor series can be applied 
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Defining the first moment of the response function as  
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and taking into account the fact that 




dt)t(R =1 we get the equation after inserting (4.108) 

into (4.109) 
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This equation is expressed in  the  reference system that moves with the group velocity, g , 

of the centre of the wave packet where 
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         (4.111) 

When comparing the equation 4.110 with the nonlinear Schrödinger equation (NLS) (4.96), 

we can notice three new terms, which are responsible for 
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 - introduces the third order dispersion. The inclusion of this dispersion 

turned out  to be necessary for short pulses since they represent a very broad spectrum, 

  AA
T

i 2

0 




 - introduces the first derivative of nonlinear polarization and it is 

responsible for self-steeping and shock formation [ 20 ] 

 
T

A
ATR




2

 is connected with Raman effect. It is responsible for the self-frequency 

shift [21] and it is induced by intrapulse scattering. 

In practice, when a pulse duration ps50  , the last two terms are negligible. Moreover, 

the first term is also insignificant if the wavelength of the pulse centre is not close to the 

wavelength, where the dispersion coefficient D=0. Therefore, we can write 
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This equation is similar to the nonlinear Schrödinger equation (4.96), if the moving 

reference system is applied, (4.111).  

When the peak-power of pulses reaches the order of 1GW/cm
2
, fifth-order nonlinear 

terms should be included in (4.4). This effect can be included through replacement of   

parameter in (4.112)  by the modified parameter 
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where sb  denotes the saturation parameter. In practice, for glass optical waveguides 

2
Abs <<1 and equation 4.112 can successfully be used even in case of relatively high 

peak-powers. However if saturation effect exists, we take it into account through inclusion 

(4.113) into the equation (4.112). Such equation is named the cubic-quintic NLS equation. 

 

4.8.3. The derivation of formula for pulse broadening due to the GVD effect 

[15] 

 
In chapter 3 we showed that the group velocity dispersion, GVD, causes pulse 

broadening.  In that chapter, we will derive the formulas that were used in chapter 3.  

The analysis will be confined to pulses longer than ps50  , so  the nonlinear 

Schrödinger equation (4.112) can be applied  
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As we said in chapter 4.8.2, this equation includes 

 loses in an optical waveguide – term A
2


, 

 group velocity – it was the term 
t

A




1  in eq. (4.96) that was taken into account in 

(4.114) via introduction the moving reference system  
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and the normalized pulse amplitude,  ,zU , that is independent of loses in an optical 

waveguide 

 

      ,zU/zexpP,zA 20        (4.116) 

 

where 0P  denotes power of the input pulse. 

Using relations of (4.115-4.116) in 4.114 we get 
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where   12 sgn  represemts the sign of  2  parameter that characterises GVD, and  
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DL  and NLL  is known  in literature as the dispersion length and the nonlinear length, 

respectively and characterize the optical length L of a fiber, for which dispersion effects and 

nonlinear effects are negligible (4.117)  

 if the length of optical waveguide fulfils the condition of DLL   and NLLL  , 

both the group velocity dispersion effects, GVD, and the nonlinear effects can be 

neglected, 

 if NLLL   but DLL  , the nonlinear effects are negligible, but GVD is important 

resulting in temporal  pulse broadening, 

 if DLL   but NLLL  , the dispersion effects are negligible in comparison to the 

nonlinear effects, time pulse distortion is caused by the self-phase modulation, SPM. 
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Of course  the first case, when both GVD and SMP effects are negligible, is the most 

desirable case  for optical transmission. We can estimate  DL  and NLL  from eq. (4.118) for 

certain input powers 0P  and duration of pulses 0 , assuming typical values of 

km/ps2

2 20  and 113  kmW  in the window of 1550nm. For short pulses and low 

input powers 0P , i.e. WP 10  , ps10  , the second case with GVD dominates with 
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For longer pulses and high input powers 0P , e.g. WP 10  , the self-phase modulation SMP 

dominates 
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Summarizing this part of discussion we can say that 

 

for standard telecommunications optical waveguides of the length of 50-80km  in the 

window of 1550nm km/ps2

2 20  and pulses of 0 >100ps, kmLD 500 , the 

dispersion effects, GVD, are negligible ( DLL  ). However for shorter pulses of 0  of 

the order of 1 ps,  mLD 50 , the dispersion effect is not negligible since DLL  . 

 

Let us consider now the influence of GVD dispersion on the pulse broadening. In 

chapter 3 we showed that the group velocity dispersion, GVD, causes pulse broadening 

(3.27a). Now we will derive that expression and other formulas, which are useful in analysis 

of pulse distortion caused by GVD dispersion. Let us  neglect the influence of nonlinearity, 

SPM, inserting =0 into (4.114) and (4.117) we obtain 
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The equation can simply be solved in the frequency domain, if we use the inverse Fourier 

transform 
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Using (4.122) in (4.121) we get the equation 
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with the solution  
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The expression (4.124) illustrates that the dispersion effect, GVD, causes phase shift of each 

frequency separately. The magnitude of that shift depends on the optical path  z of a pulse 

propagating  in an optical fiber. Coming back to the time domain (4.122) and  substituting 

(4.124) we obtain 
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where  ,U
~

0  is the normalized amplitude of the input pulse for z=0 in the frequency 

domain and is expressed via the Fourier transform 
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Let us assume the incident pulse has the Gaussian  shape  

 

  














2

0

2

2
0



T
expT,U         (4.127) 

 

where 0  the is pulse duration  defined as the half-width for the intensity corresponding to 1/e 

of its maximal value and is related to the full width at half maximum through the relation of 
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Using (4.127) in (4.126) and (4.125) we get 
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Comparing (4.127) with (4.129) we can state that the pulse keeps the Gaussian shape but it 

exhibits broadening 
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Fig. 4.28. Illustration of a Gaussian pulse broadening during propagation in an optical fiber ---

-- incident pulse at z=0, 2 – pulse after the length of z=2LD, 4 – pulse after the length of 

z=4LD [21], where LD denotes dispersion length of fiber defined by the expression of (4.118). 

 

The incident unchirped pulse does not show the phase modulation, however the pulse 

propagating through an optical fiber begins to exhibit  the phase modulation. Indeed, 

comparing (4.127) with (4.129) we get  
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where the phase of  T,z  depends on time and is expressed by the formula 
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and  
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The expression (4.133) denotes that the frequency changes linearly on T. If 2 >0 (positive 

GVD effect)  T <0 for T<0  for the leading edge of the time pulse, and positive for T>0 

for  the trailing edge. It means that the longer spectral components of the pulse travel faster 

than the shorter components and are in front of the temporal  pulse. When an optical fiber 

shows negative GVD effect, blue components are in front of pulse and red ones at its end. 

Independently on the sign of GVD, the effect GVD causes pulse broadening (4.130) (Fig. 

4.27). 

The situation is a bit different when the incident pulse has already got an initial chirp 

[21]. The initial chirp can be included through C parameter 
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When calculating  
T

T
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
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
  one can state that for C>0 the change of frequency  T  

rises linearly till the trailing edge (up-chirp), and it is opposite for C<0 (down-chirp). It 

indicates that  C>0 denotes the positive chirp and C<0 – the negative chirp. Inserting (4.134) 

into (4.126) we get 
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with the spectral width (1/e) equal to 
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For C=0 the condition of 0 =1 is met, the Fourier transform-limited case occurs and the 

pulse exhibits no chirp. Inserting (4.135) into (4.125) we obtain the pulse that remains 

Gaussian  
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and the pulse duration changes according to the relation 
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The time duration of the pulse depends on the sign of the initial chirp, C, and the sign of GVD 

dispersion in the optical fiber. If 2C >0, the time pulse undergoes monotonic broadening 

with the increase in optical distance, z. If 2C <0, the duration of the pulse decreases first and 

then monotonically increases with the increase in optical distance, z. 
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Fig. 4.29. Broadening of Gaussian chirped pulse characterised by C parameter during 

propagation in optical waveguide of positive dispersion, GVD>0, ----- pulse for C=0, C=2 – 

pulse with input positive GVD dispersion, C=-2 pulse with input negative GVD dispersion 

[21]. When a fibre shows GVD<0 the same curves characterize bandwidth broadening when 

we change signs of C. 

 

It is easy to understand the initial effect of pulse shortening looking at (4.138) equation. If 

2C <0 at the input, a pulse shows its own negative GVD (characterized by C parameter) 

opposite to GVD of the fiber in which it starts to propagate. It means that shorter 

wavelengths, which travelled faster at the input, start to demonstrate a delay effect and longer 

wavelengths starts to travel faster down the fiber. It leads to compensation of the GVD 

dispersion effect. The pulse reaches minimum for such the distance of minz  in optical 

waveguide when both effects are compensated (GVD = 0). The distance can be derived form 

the (4.138) expression 
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For  minz the pulse is the shortest min  and it shows transform-limited spectral band width, 
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where 1min   . 

 

When the pulse propagates further, for distances longer than  minz  GVD effect of the optical 

waveguide starts to dominate and the pulse becomes exhibit broadening again. 

Now, we will return to the analysis of the self-phase modulation (SPM). As we said in 

chapter 3 this effect comes from the fact that the nonlinear refraction coefficient )(n 2  

depends on pulse intensity )t(I  
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Let us  assume that GVD is negligible. In eq. (4.117) we can put 02   to obtain 
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where U is the normalized amplitud defined by (4.116), NLL  is the  nonlinear  length 
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where   depends on the nonlinear refraction index 2n (4.141),  oP  is the peak power of the 

puls. Equation (4.142) can be easily solved substituting  NLiexpVU   where NL  is 

nonlinear phase (4.47b). We get 
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V
              ,            2V
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z NL

z
NL

 





                                                                 (4.150) 
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The solution of eq.(4.142) is constant, the integral over the length L is  

      T,LiexpT,UT,LU NL0                                                                                   (4.151) 

where U(0,T) is the normalized amplitude for  z=0,  the nonlinear phase NL  for z=L is 

obtained as 

     NLeffNL L/LT,UT,L
2

0                                                                                    (4.152)       

where the effective length effL is defined as  

    /LexpLeff  1                                                                                               (4.153) 

Maximum of nonlinear phase is in the center of the temporal pulse (T=0), because we showed 

that NL  depends on the intensity. Thus, for the amplitude normalized as U(0,0)=1, we get 

eff

NL

eff

max LP
L

L
0                                                                                                      (4.154) 

As we showed  in chapter 4.6 the spectral broadening of the pulse   due to SMP comes from 

the time dependence of nonlinear phase NL . The transient frequency   0 T  along 

the pulse can be calculated from  

   2
,0 TU

TL

L

T
T

NL

effNL


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


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










                                                                  (4.155) 

The temporal broadening depends on the shape of U(0.T). Let us assume that the shape is 

given by  
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Substituting  (4.156) into  (4.155) we get 
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NL
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2

2

0

12

00

                                                             (4.157) 

From (4.157) one can see  that for  T<0  (leading edge of the pulse), 0  (red shift),  for 

T=0 (puls center), 0 , for   T>0 (trailing edge), 0  (blue shift). 

Derived here formulas help to understand the phase modulation (frequency chirp) shown in 

Fig. 4.21 which illustrates the principle of automodulation SPM.  
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